

木薯淀粉丙烯酰胺接枝共聚物对KOH溶液中铝的缓蚀作用

黄苗 王丽姿 徐昕 李向红

Inhibition Effect of Cassava Starch-Acrylamide Graft Copolymer on Aluminium in KOH Solution

Huang Miao, Wang Lizi, Xu Xin, Li Xianghong

引用本文:

黄苗, 王丽姿, 徐昕, 李向红. 木薯淀粉丙烯酰胺接枝共聚物对KOH溶液中铝的缓蚀作用[J]. 西南林业大学学报, 2021, 41(3):162-168. doi: 10.11929/j.swfu.202001022

Huang Miao, Wang Lizi, Xu Xin, Li Xianghong. Inhibition Effect of Cassava StarchAcrylamide Graft Copolymer on Aluminium in KOH Solution[J]. Journal of Southwest Forestry University(Natural Science), 2021, 41(3):162–168. doi: 10.11929/j.swfu.202001022

在线阅读 View online: https://doi.org/10.11929/j.swfu.202001022

您可能感兴趣的其他文章

Articles you may be interested in

核桃青皮提取物对NH2SO2H溶液中冷轧钢的缓蚀作用研究

Inhibition Effect of Walnut Green Husk Extract on Steel in NH₂SO₃H Solution

西南林业大学学报. 2020, 40(6): 153 https://doi.org/10.11929/j.swfu.201910057

氧化木薯淀粉用量对脲醛树脂性能的影响

Effects of Oxidation Cassava Starch Content on Urea-formaldehyde Resin Performance 西南林业大学学报. 2018, 38(1): 175 https://doi.org/10.11929/j.issn.2095-1914.2018.01.027

双醛淀粉酸解氧化制备工艺优化研究

Process Optimization of Dialdehyde Starch Prepared by Acid Hydrolysis and Oxidation 西南林业大学学报. 2017, 37(3): 199 https://doi.org/10.11929/j.issn.2095-1914.2017.03.032

氨基改性纳米纤维素气凝胶的制备及吸附性能研究

Preparation and Adsorption Properties of Ammonia Modified Nano Cellulose Aerogels 西南林业大学学报. 2018, 38(3): 181 https://doi.org/10.11929/j.issn.2095-1914.2018.03.026

柚子皮的交联改性及其吸附Pb²⁺性能研究

Crosslinking Modification of Pomelo Peel and Its Pb²⁺ Adsorption Performance 西南林业大学学报. 2018, 38(5): 154 https://doi.org/10.11929/j.issn.2095-1914.2018.05.024

库源调节对油茶叶片碳水化合物含量及其酶活性的影响

Effects of Sink-source Manipulation on Carbohydrate Content and Enzyme Activity of *Camellia oleifera* Leaves 西南林业大学学报. 2018, 38(1): 41 https://doi.org/10.11929/j.issn.2095-1914.2018.01.007

DOI: 10.11929/j.swfu.202001022

引文格式:黄苗,王丽姿,徐昕,等.木薯淀粉-丙烯酰胺接枝共聚物对 KOH 溶液中铝的缓蚀作用 [J].西南林业大学学报(自 然科学),2021,41(3):162-168.

木薯淀粉-丙烯酰胺接枝共聚物对 KOH 溶液中铝的缓蚀作用

黄 苗 王丽姿 徐 昕 李向红

(西南林业大学化学工程学院,西南林业大学西南地区林业生物质资源高效利用 国家林业和草原局重点实验室,云南昆明650233)

摘要: 以天然木薯淀粉和丙烯酰胺进行接枝共聚改性制备出木薯淀粉-丙烯酰胺接枝共聚物,用失重 法、动电位极化曲线、扫描电子显微镜和原子力显微镜研究木薯淀粉-丙烯酰胺接枝共聚物对铝在 0.5 mol/L KOH 溶液中的缓蚀作用。结果表明:在 KOH 溶液中添加木薯淀粉-丙烯酰胺接枝共聚物 后铝的腐蚀速率明显降低,说明其具有较好的腐蚀抑制作用。缓蚀率随木薯淀粉-丙烯酰胺接枝共聚 物剂量的增加而升高;随温度升高而降低,20℃时1.0g/L 木薯淀粉-丙烯酰胺接枝共聚物时最大缓 蚀率为55%,50℃时缓蚀率降低至17%。缓蚀性能腐蚀浸泡时间加长而逐渐升高,6h达到最佳, 显示出较佳的后效性。木薯淀粉-丙烯酰胺接枝共聚物在铝表面的吸附符合 Langmuir 吸附等温式, 标准吸附 Gibbs 自由能为-22.58 kJ/mol,吸附方式为物理和化学协同发挥作用的复合吸附。极化曲 线分析表明木薯淀粉-丙烯酰胺接枝共聚物为混合抑制型缓蚀剂,腐蚀电位最大正向偏移仅为 16 mV;扫描电子显微镜和原子力显微镜测试结果均表明铝片浸泡在添加了木薯淀粉-丙烯酰胺接枝 共聚物的 KOH 溶液中表面腐蚀程度和粗糙度显著降低。

关键词:木薯淀粉;接枝共聚物;缓蚀剂;铝;KOH;吸附

中图分类号: TG174.42 文献标志码: A 文章编号: 2095-1914(2021)03-0162-07

Inhibition Effect of Cassava Starch–Acrylamide Graft Copolymer on Aluminium in KOH Solution

Huang Miao, Wang Lizi, Xu Xin, Li Xianghong

(Key Laboratory of National Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical Engineering, Southwest Forestry University, Kunming Yunnan 650233, China)

Abstract: Graft copolymerization of natural cassava starch with acrylamide was used to prepare cassava starch-acrylamide graft copolymer. Weight loss, potentiodynamic polarization curve, scanning electron micro-scope and atomic force microscope methods were used to study the inhibitory effect of scanning electron micro-scope on aluminum in 0.5 mol/L KOH solution. The results show that the corrosion rate of aluminum is signific-antly decreased after adding cassava starch-acrylamide graft copolymer to KOH solution, indicating that cassava starch-acrylamide graft copolymer is a good inhibitor. Inhibition efficiency increases with the increase of the inhibitor dose, but decreases with the increase of temperature. The maximum inhibition efficiency of 1.0 g/L cassava starch-acrylamide graft copolymer at 20 $^{\circ}$ C is 55%, but dropped to only 17% at 50 $^{\circ}$ C. Inhibition performane

收稿日期:2020-01-11;修回日期:2020-03-09

基金项目:国家自然科学基金项目(51561027)资助;云南省中青年学术和技术带头人人才培养项目(2015HB049)资助;云 南省"万人计划"青年拔尖人才专项(51900109)资助。

第1作者:黄苗(1994—),女,硕士研究生。研究方向:植物缓蚀剂。Email:837533231@qq.com。

通信作者:李向红(1981—),男,教授,博士生导师。研究方向:植物缓蚀剂。Email:xianghong-li@163.com。

enhances with the increase of immersion time, and reaches optimum at 6 h, thus showing better inhibitive stability. The adsorption of cassava starch-acrylamide graft copolymer on the aluminum surface conforms to Langmuir adsorption isotherm with the standard Gibbs adsorption free energy of -225.58 kJ/mol, and the adsorption mechanism is the complex adsorption in which physisorption and chemisorption occur simultaneously. Polarization curves shows that cassava starch-acrylamide graft copolymer is a mixed inhibitor type corrosion inhibitor, and the maximum positive shift is only 16 mV. Both scanning electron microscope and atomic force microscope test results show that the degree of corrosion and surface roughness of are significantly dropped for the alumiunium immersed in KOH solution containing cassava starch-acrylamide graft copolymer.

Key words: cassava starch; graft copolymer; corrosion inhibitor; aluminum; KOH; adsorption

铝作为特殊一种特殊金属,与酸和碱液接触 时均会引发析氢反应,尤其在强碱 KOH 或 NaOH 溶液中遭受非常严重的腐蚀,其腐蚀行为受到广 泛关注。王俊波[1]研究得出了纯铝的腐蚀电流密 度随着 KOH 浓度的增加而增大。张豪等^[2] 通过 X 射线衍射仪(XRD)和扫描电子显微镜(SEM) 分析表征了铝在 KOH 溶液中腐蚀表面的主成分 为Al(OH)₃。余祖孝等^[3]通过电化学研究铝在 KOH 溶液中的阳极行为得出试样中杂质含量增加, 铝的腐蚀速率(v)加快,随着温度升高铝阳极的 活化作用加强,腐蚀也更加剧烈。邓书端等[4]通 过失重法研究了铝在 0.1~1.0 mol/L NaOH 介质中 的腐蚀规律,经过数据计算得到腐蚀动力学参 数。为阻止或减缓铝在碱性溶液中的腐蚀现象, 附加缓蚀剂是简便而合理的作法。Soliman^[5]探 究了 8-羟基喹啉对纯铝在 0.2 mol/L NaOH 介质中 的缓蚀作用,其最大缓蚀率可达66%,且通过 XPS 表征分析得出 8-羟基喹啉在铝表面形成缓蚀 保护膜层。Kumari 等^[6] 研究了一种巯基三氮唑化 合物对铝合金在 0.5 mol/L NaOH 溶液中的缓蚀性 能,最大缓蚀率可达72.3%。近年来天然聚合物 作为铝在碱性环境中的抑制剂也日益引起重视。 Elango 等^[7]研究了聚苯胺和 0.2 mol/L ZnO 的 N-甲 基-乙-吡咯烷酮溶液对铝在 2.0 mol/L NaOH 溶液 中的缓蚀作用,最佳抑制率可达 72%。Umoren 等^[8]采用量热法和量气法研究了阿拉伯胶对铝在 0.1~2.5 mol/L NaOH 介质中的缓蚀效能,当阿拉 伯胶浓度为 0.5 g/L 时最大缓蚀率为 76%。这些研 究表明,缓蚀剂对铝在碱性介质中的缓蚀作用明 显弱于在酸性介质中的缓蚀功效,故研发铝在碱 性介质中的缓蚀剂难度较大。

淀粉是常见的天然高分子化合物,但直接用 作缓蚀剂时存在缓蚀率低、水溶性差、容易糊化

等局限性。为了克服这些局限性,课题组前期研 究表明对淀粉进行接枝共聚化学改性制备出的淀 粉接枝共聚物具有更高的缓蚀效率^[9]。木薯(Manihot esculenta)为世界三大薯类作物之一,在云南 省广泛种植^[10],为了进一步拓宽木薯淀粉在工业 上的应用,对木薯淀粉进行化学改性如氧化[11]、 接枝共聚等是常用的方法。最近,有学者研究了 木薯淀粉-丙烯酰胺接枝共聚物(CS-AAGC)对 铝在 HCl^[12] 和 HNO₃^[13] 中的缓蚀性能, 20 ℃ 时 1.0 mol/L HCl 溶液中 50 mg/L CS-AAGC 缓蚀率高 达97.2%, 20℃时1.0mol/LHNO3 溶液中CS-AAGC 缓蚀率高达93.3%。在此基础上,本研究用失重 法研究了 CS-AAGC 对铝在 0.5 mol/L KOH 溶液 中的缓蚀性能,探究 CS-AAGC 在不同浓度、环 境的不同温度(T)以及不同的腐蚀浸泡时间 (t)情况下对铝在 KOH 溶液中腐蚀抑制的作用 规律,探讨了电化学作用机理和表征了铝表面的 腐蚀微观形貌,以便为淀粉接枝共聚物作为铝在 强碱溶液的缓蚀剂提供理论依据。

1 材料与方法

1.1 材料与试剂

试样为昆明铝厂生产的铝片,其中硅(Si) 质量分数为0.15%,铜(Cu)质量分数为0.024%, 铁(Fe)质量分数为0.30%,镁(Mg)质量分数 为0.002 5%,钛(Ti)质量分数为0.001%。所用 试剂:木薯淀粉(市售),丙烯酰胺(CH₂= CHCONH₂)、(NH₄)₂S₂O₈、NaHSO₃、KOH、丙酮、 无水乙醇均为分析纯试剂。

1.2 CS-AAGC 制备

CS-AAGC 的制备采用本课题前期试验确定 的较佳工艺流程^[9,12-13]:称取5g的市售木薯淀粉, 加入250 mL 的三口烧瓶中,再倒入150 mL 蒸馏 水,搅拌成糊状,放置 80 ℃ 的恒温水浴锅里进 行糊化 30 min,并通入氮气以保护反应体系,待 糊化完成后静置冷却至 40 ℃,然后同时加入烯类 单体 12.5 g丙烯酰胺和引发剂 1.14 g (NH₄)₂S₂O₈ 和 1.10 g NaHSO₃,继续搅拌 3 h。将反应液冷却 至室温,用无水乙醇沉淀产物,得到白色粉末状 固体,在 50 ℃ 干燥箱中干燥,得到接枝粗产 物。以丙酮为提取溶剂对接枝粗产物进行精提, 用素氏提取器抽提 10 h,除去均聚物,最后置于 真空干燥器(50 ℃)中烘干。

1.3 失重法缓蚀性能测试

将铝片切割成大小为 25.0 mm×20.0 mm× 0.50 mm的试样,按照 500[#]、800[#]、1000[#]顺序用 耐水砂纸进行逐级打磨至光亮,用丙酮擦洗,吹 风机冷风吹干。用电子天平(精确到 0.1 mg)进 行精确称量铝试样质量后,悬于玻璃钩上全浸于 250 mL KOH 不含或含有 CS-AAGC 的溶液中, 置于恒温水浴箱中反应特定时间段后,取出铝片 试样、洗涤干净表面腐蚀产物,吹风机冷风吹干 后再进行称重。按公式(1)计算缓蚀率(η_w)。

$$\eta_{w} = \frac{W_0 - W}{W_0} \times 100\%$$
(1)

式中: W₀为不含缓蚀剂的铝片质量损失,W为含缓蚀剂时铝片的质量损失。

1.4 电化学法缓蚀性能测试

电化学测试在 PARSTAT2273 电化学工作站 (普林斯顿公司,美国)上进行,使用三电极控 制系统:辅助电极为铂电极(213型),参比电 极为套有 Luggin 毛细管的饱和 KCl 甘汞电极 (232型)(SCE),工作电极是用聚酰胺树脂灌 封的铝电极,测试表面积为 1.0 cm×1.0 cm,打磨 处理后,在 20 ℃ 浸泡在装有 250 mL 的 KOH 测 试液中 2 h 进行测试。动电位极化曲线的检测范 围为-250~250 mV,扫描速率为 0.5 mV/s。按公 式(2)计算缓蚀率(η_0)。

$$\eta_{\rm p} = \frac{i_{\rm corr(0)} - i_{\rm corr(inh)}}{i_{\rm corr(0)}} \times 100\%$$
(2)

式中:*i*_{corr(0)}、*i*_{corr(inh)}分别为不添加和添加缓蚀剂的腐蚀电流密度。

1.5 扫描电子显微镜和原子力显微镜测试

将铝片按失重法处理办法做相同的处理后, 20 ℃恒温浸泡在不含或含有 1.0 g/L 的 CSGC 的 0.5 mol/L KOH 溶液中, 6 h 后取出洗净并吹干, 使用 Zeiss Sigma 500 扫描电子显微镜(蔡司,德 国)和 SPA-400 SPM unit 原子力显微镜(精工, 日本)完成表面测试。

2 结果与分析

2.1 CS-AAGC 的缓蚀效果

由图 1 可知,未添加 CS-AAGC 时,铝的 v 高达 38.43 g/(m²·h)表明率在 KOH 溶液中腐蚀程 度严重,实验中也可观察到铝表面析出大量的气 泡,且析出速率较快。在 KOH 中加入 CS-AAGC 后,v明显降低,并且随着 CS-AAGC 的增加, v逐渐降低,当缓蚀剂浓度(c)为1.0 g/L 时, v为 17.31 g/(m²·h)。

CS-AAGC 对铝在 KOH 溶液中的η_w随 *c* 增加 而增大,但当 CS-AAGC 浓度达到 0.8 g/L 后直至 1.0 g/L,缓蚀率不再发生明显变化,当期浓度加 大到 1.0 g/L 时获得最佳抑制效果,此时缓蚀率为 55%。此现象可解释为 CS-AAGC 在铝表面的着 附量随着 *c* 的增加而增大,当着附量达到一定程 度后缓蚀剂吸附量趋近平衡和饱和,随后再加大 CS-AAGC 的浓度,金属铝表面的吸附量不会发 生显著变化。

在 25 ℃ 时的实验测试表明,46 mmol/L 8-羟基喹啉对铝在 0.2 mol/L NaOH 的缓蚀率可达 66%^[5],但 8-羟基喹啉的用量浓度较高、成本较 高。30 ℃ 时 50 mg/L 3-巯基-4-氨基-5-苯基-4H-1,2,4-三氮唑对铝在 0.5 mol/L NaOH 的缓蚀率为 72.3%^[5],但 3-巯基-4-氨基-5-苯基-4H-1,2,4-三 氮唑的价格昂贵,合成路线复杂。因此,CS-AAGC 作为强碱中的缓蚀剂具有来源广、价格低廉且环 境友好的突出优势。

2.2 CS-AAGC 在铝表面的吸附等温式及标准吸附自由能

假设 CS-AAGC 在铝表面的吸附符合 Langmiur 吸附等温式^[12-13],如公式(3)。

$$\frac{c}{\theta} = \frac{1}{K} + c \tag{3}$$

式中: K 为吸附平衡常数, θ 为 CS-AAGC 分子在 铝表面吸附时的表面覆盖度, 取值可用缓蚀率。

从图 2 中可知, c/θ和 c之间有较好的直线关系, 线性相关系数 (r^2)为 0.997 0, 说明在 KOH中, CS-AAGC 在铝片表面的吸附符合 Langmuir 吸附等温式。直线斜率(1.74)有所偏离 1, 说明 CS-AAGC 在铝片表面吸附后存在相互作用力^[14]。标准吸附自由能(ΔG^0)按公式(4)^[15]计算。

图 2 20 ℃ 时 0.5 mol/L KOH 中的 *c*/θ-*c* 直线 Fig. 2 Straight line of *c*/θ-*c* in 0.5 mol/L KOH at 20 ℃

 ΔG^0 计算值为-22.58 kJ/mol,由计算结果 $\Delta G^0 < 0$ 表明 CS-AAGC 在金属铝表层的吸附为 自发过程,且绝对值处于 20~40 kJ/mol 范围内 表明 CS-AAGC 在铝表面上的吸附属于物理吸附 和化学吸附的混合吸附^[15]。 ΔG^0 绝对值已接近 20 kJ/mol,进一步表明 CS-AAGC 的吸附主要为 物理吸附。

$$K = \frac{1}{c_{\text{solvent}}} \exp\left(\frac{-\Delta G^0}{RT}\right)$$
(4)

式中: *R* 为理想常数, *K* 为吸附平衡常数, *c*_{solvent} 是溶剂的浓度,本文取其近似值1000 g/L。

 2.3 浸泡时间及温度对 CS-AAGC 缓蚀性能影响

 2.3.1 浸泡时间对 CS-AAGC 缓蚀性能影响

固定 CS-AAGC 的浓度为 1.0 g/L, 在 20 ℃ 测试不同浸泡时间(t)的 CS-AAGC 在 0.5 mol/L KOH 溶液中的 η_w , 结果见图 3。当 t为 1 h 时, CS-AAGC 的缓蚀率为 42.1%,表明缓蚀剂分子在 金属表面的吸附速率较快,缓蚀效果成效较快。 随着 t的延长,缓蚀率逐渐上升,当铝片在 KOH 介质中持续浸泡 6 h 时, CS-AAGC 的缓蚀率上升 至 55%。往 KOH 溶液介质中添加 CS-AAGC 后, 缓蚀剂分子会驱替铝表面的腐蚀离子,且随着时 间的延长,铝表面的腐蚀离子数量不断减少,而 缓蚀剂分子会逐渐增多,即缓蚀剂分子在金属表 面的吸附量随 t 的延长而增大,且致密程度增 强,故缓蚀效果愈来愈好。

CS-AAGC 的 η_w 与 t 关系 Fig. 3 Relationship between inhibition efficiency (η_w) of 1.0 g/L CS-AAGC and immersion time (t) in 0.5 mol/L KOH

2.3.2 温度对 CS-AAGC 缓蚀性能影响

固定浸泡时间 6 h,缓蚀剂 CS-AAGC 的浓度 用量为 1.0 g/L,测试了 20 °C ~ 50 °C 温度下的缓 蚀率,结果见图 4。温度(T)越高,铝表面的 v急剧加快,表面析出大量氢气,同时缓蚀剂分 子在体系中的相互碰撞频率显著加剧,使吸附在 铝片表面的缓蚀剂分子脱落,导致缓蚀率下降, 当 T升高至 50 °C 时,缓蚀率低至 17%。

图 4 0.5 mol/L KOH 溶液中 η_w 与 T 的关系 Fig. 4 Relationship between inhibition efficiency (η_w) and temperature (T) in 0.5 mol/L KOH solution

根据 Arrhenius 计算公式,铝的 v 的自然对数 ($\ln v$)和 T 的倒数(1/T)之间有以下线形关系 式(5)^[9]。由图 5 可知,添加 CS-AAGC 前后的 直线 ln v-1/T,具有良好的线性关系(r^2 分别为 0.994 9 和 0.996 5)。根据(5)式,由直线的 ln v-1/T斜率和截距可求出活化能(E_a)和指前因子 (A)。铝在空白 KOH 溶液中的 E_a 为 43.69 kJ/mol、 A 为 2.24 × 10⁹ g·m²·h¹,添加 CS-AAGC 后 E_a 为 59.71 kJ/mol、A 为 7.28 × 10¹¹,即缓蚀体系的表 观活化能和指前因子上升。 E_a 增加和A 减小均会 使 v 减小,从而表现出良好的缓蚀性能。所以, CS-AAGC 的缓蚀性能主要归因于活化能的上升。

$$\ln v = \frac{-E_a}{RT} + \ln A \tag{5}$$

式中: *E_a*为表观活化能, *A*为指前因子, *R*为气体常数。

2.4 铝在含 CS-AAGC 的 KOH 溶液中的动电位 极化曲线

由图 6 可知,加入 CS-AAGC 后,阴阳两极 极化曲线均向左移动,即阴阳两极腐蚀反应均 受到了一定程度的抑制,属于混合抑制型缓蚀 剂。对图 6 的极化曲线进行 Tafel 线性外推法处理 得出腐蚀电化学参数,见表1。由表1可知,铝 在空白 KOH 溶液中的腐蚀电流密度(*i*corr)高达 7142 uA/cm²,数据证明铝遇到强碱性介质时会引 发严重的腐蚀。当向 KOH 溶液中添加 CS-AAGC 后 icorr 明显下降,且随 c 增加而下降幅度增加, 而 η_p 则反过来增大,当 η_p 为 1.0 g/L 时最大缓蚀 率 (E_p) 为 92.6%,再次表明 CS-AAGC 能有效 抑制铝在 KOH 溶液中的腐蚀。和空白溶液相 比,加入 CS-AAGC 后腐蚀电位 (E_{corr})则基本 未发生显著改变,再次说明 CS-AAGC 缓蚀剂在 KOH 溶液中为混合抑制型缓蚀剂, 电化学缓蚀作 用机理为"几何覆盖效应"^[13]。添加 CS-AAGC 后阴极 Tafel 斜率 (b_c) 和阳极 Tafel 斜率 (b_a)

数值基本未发生改变,故铝在含 CS-AAGC 的 KOH 溶液中的腐蚀阳极氧化失电子和阴极还原得 电子反应未发生明显改变。

图 6 20 ℃ 时未添加和添加 CS-AAGC 在 0.5 mol/L KOH 介质中动电位极化曲线

Fig. 6 Potentiodynamic polarization curves of aluminium in 0.5 mol/L KOH containing CS-AAGC at 20 °C

表 1 20 ℃ 铝在不含和含 CS-AAGC 的 0.5 mol/L KOH 溶液中的腐蚀电化学参数

Table 1 Electrochemical corrosion parameters for aluminium in 0.5 mol/L KOH without and with CS-AAGC at 20 $^{\circ}$ C

с/	E _{corr} /	i _{corr} /	<i>b</i> _c /	$b_{\rm a}$ /	$\eta_{\rm p}$
$(g \cdot L^{-1})$	mV	$(\mu A \cdot cm^{-2})$	(mV·dec ⁻¹)	(mV·dec ⁻¹)	%
0	-1 495	7 142	314	72	—
0.1	-1 488	3 835	336	55	46.3
0.5	-1 483	3 371	338	58	52.8
1.0	-1 479	2 743	329	54	61.6

2.5 铝表面的 SEM 及 AFM 分析

2.5.1 铝表面的 SEM 分析

由图 7 可知,铝在 0.5 mol/L KOH 溶液腐蚀 6 h 后,表面被严重腐蚀,粗糙不平,表面覆盖有 大量的颗粒状腐蚀产物。与之相对应的是,缓蚀 铝表面则在添加 1.0 g/L CS-AAGC 后,铝片表面 相对平整,还残留有砂纸打磨的刮痕印迹,腐蚀 程度大幅度降低,表明 CS-AAGC 能有效抑制铝 在 KOH 溶液中的腐蚀,即 CS-AAGC 表现出良 好的缓蚀性能。

2.5.2 铝表面的 AFM 分析

由图 8 可知,铝在 0.5 mol/L KOH 溶液腐蚀 6 h 后,表面腐蚀严重,粗糙不平,表面覆盖有 大量的棒状或束状的腐蚀产物。在添加 1.0 g/L

CS-AAGC后,铝表面较为平整,腐蚀程度变小,仍然能看见一点砂纸磨擦的印迹,表明 CS-AAGC能对铝在 KOH 中腐蚀产生了明显的抑制作用。

a. 未添加 CS-AAGC

b. 添加1.0 g/L CS-AAGC

2.6 缓蚀作用机理

铝在 KOH 溶液中主要发生析氢反应, 阳极氧 化反应过程、阴极还原反应如公式(6)~(8)。

$$Al \rightarrow Al^{3+} + 3e^{-}$$
(6)
$$Al^{3+} + 4OH^{-} \rightarrow Al(OH)_{4}^{-}$$
(7)

 $2H_2O + 2e^- \rightarrow 2OH^- + H_2 \tag{8}$

木薯淀粉-丙烯酰胺接枝共聚物的分子结构 式^[13] 如图 9 所示,木薯淀粉中含有 17% 直链淀粉 和 83% 支链淀粉^[16],这 2 种淀粉均会发生接枝共 聚。直链淀粉的聚合度为 990,分子量为 $1.0 \times 10^5 \sim 2.0 \times 10^5$ g/mol;支链淀粉的聚合度为 7 200, 分子量为 2.0×10^7 g/mol。

图 9 CS-AAGC 的分子结构式 Fig. 9 The molecular structure of CS-AAGC

热力学参数研究结果表明 CS-AAGC 在铝表 面会发生物理和化学作用的吸附。首先,CS-AAGC 分子中具有—OH 和—NH₂,故分子的偶极矩较 大,会依靠分子间力吸附在铝表面上;其次, CS-AAGC 也可与溶液中的 Al³⁺形成螯合物后吸 附覆盖在金属铝表面而抑制了金属表面的腐蚀。 此外,CS-AAGC 中的 O、N 原子具有大量的孤 对电子,可与 Al 的空 p 轨道形成配位键发生化学 吸附。

3 结论与讨论

在 0.5 mol/L KOH 溶液中添加 CS-AAGC 后 铝的 v 显著降低, 故 CS-AAGC 具有良好的缓蚀 作用,缓蚀率随着 CS-AAGC 的浓度增加和浸泡 时间的延长而升高,但随着*T*的上升而降低。20 ℃ 时添加 1.0 g/L CS-AAGC 铝的 v 由 38.43 g/(m²·h) 下降至 17.31 g/(m²·h), 6 h 时缓蚀率为 55%; 50 ℃ 下降至17%。CS-AAGC在AI表面的吸附符合 Langmuir 吸附等温式,但CS-AAGC 在铝片表面 吸附后存在相互作用力,且标准吸附 Gibbs 自由 能为-22.58 kJ/mol,吸附作用方式为物理吸附为 主的混合吸附。CS-AAGC 的缓蚀性能主要归因 于表观活化能 (E_a) 的上升, 铝在 KOH 溶液中 的 E_a为 43.69 kJ/mol, 添加 1.0 g/L CS-AAGC 后 E_a为 59.71 kJ/mol。极化曲线数据分析 CS-AAGC 为混合抑制型缓蚀剂,腐蚀电位基本保持不变。 SEM 和 AFM 均表明添加 CS-AAGC 后铝片表面 腐蚀程度和粗糙度降低, 微观形貌上残留有砂纸 打磨留下的痕迹,显著抑制了铝在 KOH 溶液中 的腐蚀。

[参考文献]

- 王俊波. 铝在碱性介质中的腐蚀与电化学行为 [D].
 杭州: 浙江大学, 2009.
- [2] 张豪,邢丕峰,李萍,等.铝在氢氧化钠溶液中的电解 加工与钝化机理[J].强激光与粒子束,2014,26(11):

168

81-85.

- [3] 余祖孝, 陈昌国, 罗忠礼, 等. 铝在碱性电解液中的阳极行为 [J]. 电源技术, 2005, 29(9): 602-606.
- [4] 邓书端, 李向红, 付惠, 等. 铝在 NaOH 中的腐蚀动力 学参数 [J]. 清洗世界, 2010, 26(8): 24-27.
- [5] Soliman H N. Influence of 8-hydroxyquinoline addition on the corrosion behavior of commercial Al and Al-HO411 alloys in NaOH aqueous media [J]. Corrosion Science, 2011, 53(9): 2994–3006.
- [6] Kumari P D R, Nayak J, Nityananda Shetty A. Corrosion inhibition of aluminum type 6061 Al-15 vol. pct. SiC(p) composite in 0.5-M sodium hydroxide solution by 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol [J]. Anti-Corrosion Methods & Materials, 2014, 61(4): 241-249.
- [7] Elango A, Periasamy V M, Paramasivam M, et al. Novel polymeric inhibitor for corrosion of 57S aluminium in 2M NaOH solutions [J]. Anti-Corrosion Methods & Materials, 2010, 57(1): 3–5.
- [8] Umoren S A, Obot I B, Ebenso E E, et al. Gum arabic as a potential corrosion inhibitor for aluminium in alkaline medium and its adsorption characteristics [J]. Anti-Corrosion Methods & Materials, 2006, 53(5): 277–282.
- [9] Li X H, Deng S D. Cassava starch graft copolymer as an eco-friendly corrosion inhibitor for steel in H₂SO₄ solution [J]. Korean Journal of Chemical Engineering, 2015, 32(11): 2347–2354.
- [10] 刘倩, 刘光华, 李月仙, 等. 怒江干热河谷区域 5 个木

薯品种的综合性状比较 [J]. 西南林业大学学报(自 然科学), 2018, 38(1): 66-71.

- [11] 王辉,王洪艳,普龙,等.氧化木薯淀粉用量对脲醛树 脂性能的影响[J].西南林业大学学报(自然科学), 2018,38(1):175-179.
- [12] 李向红, 付惠, 李云仙, 等. 木薯淀粉接枝共聚物在 HCI 溶液中对 AI 的缓蚀性能研究 [J]. 腐蚀科学与防 护技术, 2016, 28(6): 525-530.
- [13] Li X H, Deng S D, Lin T, et al. Cassava starch graft copolymer as a novel inhibitor for the corrosion of aluminium in HNO₃ solution [J]. Journal of Molecular Liquids, 2019, 282: 499–514.
- [14] 马玉聪, 樊保民, 王满曼, 等. 曲唑酮的两步法制备及 对碳钢的缓蚀机理 [J]. 高等学校化学学报, 2019, 40(8): 1706-1716.
- [15] 肖云,魏国升,王瑛.栾树籽提取物在 5% H₂SO₄ 中 对 A3 碳钢的缓蚀性 [J]. 腐蚀与防护, 2013, 34(10): 896-900.
- [16] Defloor I, Dehing I, Delcour J A. Physico-chemical properties of cassava starch [J]. Starch, 1998, 50(2/3): 58–64.

(责任编辑 冯 雪)

