DOI: 10.11929/j.swfu.202102012

引文格式:罗大鹏,农明川,李会朋,等. 桉树人工林单木地上生物量空间效应分析 [J]. 西南林业大学学报(自然科学), 2022, 42(2): 120–129.

桉树人工林单木地上生物量空间效应分析

罗大鹏^{1,2} 农明川^{1,2} 李会朋² 王俊峰² 欧光龙^{1,2}

(1.西南林业大学林学院,云南昆明 650233;2.西南林业大学西南地区生物多样性保育国家林业局重点实验室,云南昆明 650233)

摘要: 以桉树人工林皆伐样地调查数据为研究对象,记录样地内林木的空间位置坐标,并实测每株 林木的木材、树皮、树枝、树叶的生物量,采用 Ripley's K 函数描述林木地上部分各维度生物量的空 间分布模式,通过全局和局部 Moran's I 描述其空间自相关特征,基于组内方差定量描述各维度生物 量的空间异质性变化。结果表明:桉树人工林单木地上生物量变化具有尺度效应,即在不同的距离 尺度下表现出不同的聚集或离散特征,除树叶生物量在 18.5~21.5 m 范围内呈现显著聚集分布外, 其余均未表现出显著的聚集分布特征;桉树人工林地上各维度生物量的最佳距离带宽均为 12.5 m, 且各维度均存在一定的空间自相关,全局 Moran's I 范围在 0.0160~0.0289;各维度局部空间自相关 变化趋势相对一致,各维度均有近 15%的林木有显著空间自相关;随着距离尺度的增加,桉树人工 林各维度生物量空间异质性均逐渐增大,且在距离大于 5 m 后逐渐平稳,所有生物量维度中树叶生 物量的空间变异程度最大。因此,桉树人工林各维度单木生物量存在一定程度的空间自相关和空间 异质性,且各维度间差异不大。

关键词: 桉树; 人工林; 单木; 地上生物量; 空间效应 中图分类号: S758 文献标志码: A 文章编号: 2095-1914(2022)02-0120-10

Spatial Effect Analysis on Individual Aboveground Biomass of *Eucalyptus* Plantation

Luo Dapeng^{1,2}, Nong Mingchuan^{1,2}, Li Huipeng², Wang Junfeng², Ou Guanglong^{1,2}

(1. College of Forestry, Southwest Forestry University, Kunming Yunnan 650233, China; 2. Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming Yunnan 650233, China)

Abstract: Taking the clear-cutting plot survey data of *Eucalyptus* plantation as the research object, the location coordinates of each tree in the plot were recorded, and the biomass of wood, bark, branch and foliage for each tree was measured. Then, the spatial distribution patterns were described for the wood, bark, stem, branches, foliage, crown and aboveground biomass using Ripley's *K* function, the spatial auto-correlation characteristics were analyzed by both global and local Moran's *I*, and the spatial heterogeneity of each biomass component was quantitatively described using the intra-variance index. The results showed that the aboveground biomass of *Eucalyptus* plantations had scale effect, and it showed the different aggregation or dispersion characteristics at different distance scales. Except for the foliage biomass shows a significant aggregation distribution if the distance is in the range of 18.5-21.5 m, and spatial distribution characteristics of the others are insignificant aggregation.

收稿日期:2021-02-09;修回日期:2021-08-28

基金项目:国家自然科学基金项目(31760206,31660202)资助;云南省唐守正院士工作站(2018IC066)资助;云南省王广兴 专家工作站(2018IC100)资助;云南省万人计划青年拔尖人才专项(YNWR-QNBJ-2018-184)资助。

第1作者:罗大鹏(1996—),男,硕士研究生。研究方向:森林测计学。Email: 376421454@qq.com。

通信作者: 欧光龙(1983—), 男, 博士, 教授, 博士生导师。研究方向: 森林测计学。Email: olg2007621@126.com。

Moreover, the optimal distance bandwidth for all biomass components of *Eucalyptus* plantation are 12.5 m, and spatial auto-correlation could be found in each component at a certain content, and the global Moran's *I* from 0.0160 to 0.0289. Meanwhile, the local spatial auto-correlation change of all biomass components are similar relatively, and nearly 15% of the trees in each component have a significant spatial auto-correlation. The spatial heterogeneity of all biomass components increase gradually with the increases of the distance, and the spatial variation would be stable if the distance is greater than 5 m, the spatial variation of foliage biomass is the largest one in all biomass components. In sum, there is spatial auto-correlation and spatial heterogeneity in the individual above-ground biomass in the *Eucalyptus* plantation at a certain degree, and the differences among the different biomass components are not significant.

Key words: Eucalyptus spp.; plantation; individual tree; aboveground biomass; spatial effect

森林生态系统作为地球上维系生态平衡和物质循环的主要生态系统,在全球大气循环研究中居重要地位^[1]。森林生物量约占陆地生态系统植被总生物量的 90%,在维持全球气候稳定、调节全球碳平衡、减缓大气温室气体浓度上升等方面具有不可替代的作用^[2]。对森林生物量的研究关系到生态系统生产力、碳循环,是全球变化研究的基础参数,同时森林生物量也是表征植物活动的关键变量^[3]。森林生物量普遍存在空间效应,忽视森林生物量的空间效应可能会带来生物量变化分析的有偏估计或者误差^[4-5]。

空间效应分析可以用于检验森林生物量在空 间上的相关性强弱以及在空间上的变异性⁶⁰,主 要表现为空间异质性和空间自相关性两个方面[7-8]。 空间异质性普遍存在于自然界中¹⁹, 它是指系统 或系统属性在空间分布中的复杂性和变异性,系 统属性可以是生物量,土壤含氮量等生态学变量[10]; 空间异质性在一定程度上反映森林生物量在空间 上的差异,且空间异质性的评价方法随空间数据 类型的不同而存在差异,空间异质性的研究理论 常用的有地统计学方法,也有研究使用组内方差 对空间异质性进行分析[11-12]。空间自相关是一种表 现地理数据在空间上的依赖程度的统计方法[13-14], 研究对象集聚或离散效果最显著时的距离阈值, 分析变量间的空间自相关,可以大幅度提升空间 格局分析的精度[15]。反映整个研究区域内总体的 全局空间自相关指数,以及描述区域内研究对象 与其相邻单元间的空间相关性的局域空间自相关 指数(LISA)是分析描述空间自相关的两个重要 方面[16-20]。关于森林生物量的空间效应分析,农 明川等^[5]对昆明市云南松(Pinus yunnanensis)生 物量的空间分布规律进行研究,指出昆明市云南 松地上生物量呈现显著的空间自相关关系;张维 生[17] 以空间自相关分析方法为基础,对黑龙江省 的森林和地貌等因子进行了研究,指出该地区的 森林、地貌等因子的存在空间正相关性; 王维芳 等[18] 也基于相似的方法对帽儿山地区的森林生物 量的空间自相关性进行了分析,同样得出了相似 的结论。但是这些分析在一定程度上揭示在区域 尺度上森林生物量的空间分布模式,以及森林生 物量分布的空间自相关性; 尤其是在林分尺度 上,揭示林内单木生物量间的空间效应变化规律 的研究较少,欧光龙等^[20]采用空间回归模型构建 思茅松(Pinus kesiya)不同维度的单木生物量模 型,取得了较好的拟合效果,这在一定程度上说 明了各维度单木生物量是存在空间效应的,但是 没有对空间及邻近木关系进行研究;徐美玲等^[21-22] 对云南省思茅松林的混交度、大小比数和角尺度 几个空间结构参数进行量化分析,结果表明思茅 松天然林整体呈现均匀分布。这些研究表明林木 单木各维度生物量存在空间效应,但是基于实测 数据,准确描述林内林木各维度间的空间效应关 系的研究仍然缺乏。

桉树(*Eucalyptus* spp.)由于适应环境能力 强、生长迅速,经营周期短,单位面积产量高等 特点,成为了热带和亚热带地区最重要的人工林 树种^[23],也被认为是世界人工造林三大速生树种 之一,是中国南部省区极其重要的速生丰产林造 林树种。分析桉树人工林单木生物量各维度间的 空间效应,揭示其生物量空间变化规律对于准确 描述林木生物量生长变化规律至关重要。基于 此,本研究以云南省楚雄州桉树人工林皆伐样地 (100 m×30 m)的单木各维度生物量(木材、树 皮、树干、树枝、枝叶、树冠以及地上生物量) 的实测数据为基础,采用空间自相关和空间异质 性分析方法,对楚雄州东华镇桉树人工林地上生 物量的空间分布规律进行研究^[24],以获知桉树人 工林各维度生物量的空间分布差异。在此基础上 深入分析各维度生物量空间分布差异的成因,并 确定桉树人工林单木各维度生物量空间效应研究 的最佳距离阈值,从而准确获取区域森林生物量 的空间分布信息,以期为提高桉树人工林的经济 效益和生态效益提供理论依据。

1 材料与方法

1.1 研究区概况

东华镇位于云贵高原中部的云南省楚雄州西 南部,地处东经101°21′29″~101°31′34″,北纬 24°26′36″~25°01′16″,总面积448 km²,由于地 处紫溪山南麓,整体地势呈东北低、西南高的特 点。平均海拔1895~1990 m,属于亚热带季风 气候,其年均温、年均降雨量、年均日照、平均 降霜期分别为15.6 ℃、831 mm、2422 h、96 d, 楚雄州境内分布植被类型主要为中亚热带常绿阔 叶林和针叶林^[25]。

1.2 样地调查

研究区桉树林为10年生人工纯林,林分保存 密度为1667株/hm²。样地设置为矩形,样地面积 为 0.3 hm²,样地中心点海拔 1783 m。桉树人工 林样地,经过数据整理,共调查 445 株样木(图1)。 样地调查记录径阶大于 5 cm 的林木的基本信息: 位置、胸径、树高、冠幅、枝下高等信息。

圆圈大小与胸径成正比,横纵坐标均表示距离(单位:m)。

图 1 样地示意图 Fig. 1 The map of study plots

本研究所用数据为 2019 年 12 月于楚雄州实 测调查,单木生物量的测定参考《林木生物量模 型研究》^[26]。树枝生物量和树叶生物量的测定采 用全称重法,即先测出树枝和树叶质量,然后分 别取样烘干后求出含水率进而推算出树枝和树叶 的质量。对于胸径较小的树干采用全称重法测定 生物量,而胸径较大的树干生物量则采用材积密 度法测定,即通过对树干进行取样,测定样品的 质量和体积(样品体积通过排水法测定)从而求 算其密度,进而推算树干生物量^[27],样木生物量 信息见表 1。

表 1 样木基本信息 Table 1 The basic characters of sample trees

kg

							-
统计量	木材生物量	树皮生物量	树干生物量	树枝生物量	树叶生物量	树冠生物量	地上生物量
最小值	1.98	0.12	2.10	0.09	0.12	0.22	2.64
最大值	487.10	62.25	549.36	26.57	20.97	47.54	596.90
平均值	71.68	8.74	80.42	5.32	2.54	7.86	88.27
标准差	72.44	9.21	81.51	4.69	3.01	7.55	88.89

1.3 样地边缘校正方法

本研究采用的样地边缘校正方法为:Simulate Outer Boundary Values。此方法会在研究区域边界 外,创建边界内所发现点的镜像点,以便校正边 界附近的低估现象。将镜像与研究区域的边的最 大距离范围相等的距离内的点,使用镜像的点会 使边界点的相邻点估计更加精确^[28]。

1.4 空间分布模式

本研究选择 Ripley's K 函数来描述单木地上生物量的空间分布模式, K 函数作为一种基于距离的概括要素空间分布累积特征的方法,常被用来描述点要素在空间范围内的相关性程度,反映要素随尺度变化而呈现出的空间分布模式^[29],为了克服 K 函数的方差不稳定的问题, Besag^[30]将

*K*函数进行开方线性转化为*L*函数,转化后的 *L*函数公式如下:

$$L(d) = \sqrt{\frac{A \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} k(i, j)}{\pi n(n-1)}}$$
(1)

式中: *A* 是研究区面积; *d* 表示距离阈值; *n* 为点 要素数量; *k*(*i*,*j*) 为权重,距离 *d* 的最大值取值应 为最短边的一半,大于该距离可能导致分析结果 不准确; 通过比较真实点的 *L*(*d*) 和样地空间随机 点(CSR)之间的 *d*,若 *L*(*d*)>0 则表明在尺度为 *d* 时研究对象为聚集分布; *L*(*d*)<0 则说明研究对象 呈离散分布; 而 *L*(*d*)=0 则表明研究对象呈随机分布。 **1.5 空间自相关分析**

1.5.1 全局 Moran's I

全局 Moran's I 是全局空间自相关分析的重要

指标,它能反映出研究区域内的对象的总体空间 聚类模式^[31]。

$$I = \left(\frac{n}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}}\right) \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(2)

式中: I是全局 Moran's 指数值; n是变量 x 的观 测数; x_i, x_j 分别为位置 i 和位置 j 的生物量值; \bar{x} 是所有生物量的平均值; w_{ii} 是空间权重矩阵值。

全局 Moran's 指数 *I* 的取值意义随 *Z*(*I*) 的阈值 的不同而存在差异。

$$Z(I) = \frac{I - E(I)}{\sqrt{\operatorname{Var}(I)}}$$
(3)

$$E(I) = \frac{-1}{n-1} \tag{4}$$

式中: Z(I) 是空间聚类模式强度的衡量指标; E(I) 和 Var(I) 分别是指数值 I 的期望值和方差;在给 定的置信水平下(假定 a=0.1),若 I<0,Z(I)< -1.96 表示空间要素间存在显著的空间负相关性。 若 I<0,Z(I)<-2.58 表示空间要素间存在极显著的 空间负相关性,表现为相异聚集(也称异常值), 即相邻要素的属性值间差异较大的聚集在一起; 若 I>0,Z(I)>1.96 表示观测对象间存在显著的空 间正相关关系。若 I>0,Z(I)>2.58 表示观测对象 间存在极显著的空间正相关关系,呈现出相似聚 集的现象,即相邻要素属性值间差异较小的相互 聚集;若 I=0 或-1.96<Z(I)<1.96 则表示观测对象 间不存在空间相关性,随机分布于研究区域内^[32]。 1.5.2 局部 Moran's 指数

局部 Moran's 指数可用于反映局部区域内特 定属性值间是否存在空间自相关关系。在本研究 中,它是一种弥补全局 Moran's 指数仅能对总体 的空间自相关情况进行分析而不能反映特定地点 研究对象与其相邻要素间的空间相关性的缺陷的 方法^[33]。局部 Moran's 指数(*I_i*)的计算公式如下 所示:

$$I_{i} = \frac{n^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}} \cdot \frac{(x_{i} - \bar{x}) \sum_{j=1}^{n} w_{ij} (x_{j} - \bar{x})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
(5)

式中: I_i 是局部 Moran's 指数值; n 是变量 x 的观 测数; x_i, x_j 分别为位置 i 和位置 j 的属性值; x是所有属性值的均值; w_{ij} 是空间权重矩阵值。

1.6 空间异质性分析

空间要素的空间异质性可以通过组内方差进 行描述,组内方差可定量地描述研究对象的局部 空间异质性,是分组距离大小的函数,通常会随着分组距离的增加而增大^[34],其表达式如下:

$$S_{\text{intra}} = \frac{1}{B} \sum_{g=1}^{B} \frac{1}{n_g} \sum_{h=1}^{n_g} (X_{gh} - \overline{X}_g)^2$$
(6)

式中: *B* 是特定分组距离下的组的数量, *g* 为特定分组, *n_g* 为特定组内样本量, *X_{gh}* 是在第 *g* 个组中的第 *h* 个生物量值, $\overline{X_g}$ 是在第 *g* 个组内的生物量 *X* 的平均值。

1.7 数据处理

使用 Excel 2019 软件对实测数据进行标准化 处理和相关表格的制作,使用 ArcGIS 10.6 软件下 的多距离空间聚类分析工具进行空间分布模式的 分析,增量空间自相关工具进行全局空间自相关 分析,聚类与异常值分析工具进行局部空间自相 关分析,空间异质性的组内方差分析在 SPSS 20.0 中完成。

2 结果与分析

2.1 桉树生物量空间分布模式分析

从单木各维度生物量的 Ripley's K 函数经变换 后的L函数的变化曲线可以看出,除树叶生物量 (图 2e)外, 桉树人工林各维度生物量空间聚集 模式呈现相似的规律,均以2m为界,2m以内 均呈现离散分布, 2~14m左右呈现聚集分布, 15 m 以后均呈现离散分布(图 2)。其中木材生 物量空间分布格局在 0~2 m 范围内离散分布, 2~14 m 范围内表现为聚集分布, 14~25 m 范 围内表现为离散分布(图 2a);树皮生物量在 0~2m范围内离散分布, 2~15m范围内表现为聚 集分布, 15~25 m 范围内表现为离散分布 (图 2b); 树干生物量空间分布格局在 0~2 m 范围内离散分 布, 2~14.5 m 范围内表现为聚集分布, 14.5~25 m 范围内表现为离散分布(图 2c);树枝生物量空 间分布格局在0~2m范围内离散分布,2~14.5m 范围内表现为聚集分布, 14.5~25 m 范围内表现 为离散分布(图 2d);树叶生物量在 0~1 m之 间呈现聚集分布, 1~3.5 m 为离散分布状态, 3.5~ 25 m 呈 现 聚 集 分 布 趋 势 , 且 在 18.5 ~ 21.5 m 范围内呈现显著聚集分布 (图 2e); 树冠生物量 空间分布格局在 0~2 m 范围内离散分布, 2~ 14.5 m 范围内表现为轻度聚集分布, 14.5~25 m 范围内表现为离散分布(图 2f);树枝生物量空 间分布格局在0~2m范围内离散分布,2~13.5m 范围内表现为轻度聚集分布, 13.5~25 m 范围内 表现为离散分布(图 2g)。总体来看,桉树人工

林全林各维度生物量观测值均介于上下包迹线之间, 且各维度生物量实际值更接近于上包迹线,

聚集特性不是很明显。

2.2 桉树生物量全局空间自相关分析

桉树人工林全林的各维度生物量的增量空间 自相关分析结果见图 3。由图 3 可知,桉树人工 林树枝生物量 7 m、树叶生物量 5.5 m 和 7 m、树 冠生物量 5.5 m 和 24~25.5 m 时呈负的空间自相 关,此时生物量呈现高值与低值相聚集的聚类模 式。其他距离上均呈正空间自相关,生物量存在 高值于高值或低值于低值聚集的聚类模式。木 材、树皮、树干及地上生物量在 5~30 m 均呈正 空间自相关,此时各维度生物量存在高值于高值 或低值于低值聚集的聚类模式。

观测到各维度生物量的 Z 值达到显著后的第 一个聚集峰值所对应的距离均为 12.5 m,也就是 说当空间距离为 12.5 m 时空间相关性达到极限, 因此, 楚雄州桉树人工林的最佳分析距离尺度为 12.5 m。随着距离尺度的增加, 桉树人工林全林 的木材、树皮、树干、树枝、树叶、树冠和地上 生物量均表现出一定程度的空间自相关性且空间

变化规律相似,但相关性不显著,Moran's / 值范 围 0.0160~0.0289,单木各维度生物量间相关性 较低。

2.3 桉树生物量局部空间自相关分析

由图 4 可知,对于桉树全林各维度生物量而 言,均表现出了不同程度的空间自相关关系,且 各维度生物量的空间自相关变化特征相仿。在样 地左侧基本呈现出明显的高值于低值聚集(HL) 并伴有低值于低值聚集(LL)的情况;在样地右 侧基本呈现出明显的低值于高值聚集(LH),在 样地右侧还出现明显的高值于高值聚集(HH)并 伴有低值于高值聚集(LH);由表2可知,从桉 树人工林全林来看,尽管85%的生物量值没有呈 现出显著的自相关性(NS),但是15%的生物量 值显示出显著的空间自相关,其中4%的生物量 值显示出极显著的空间自相关,说明各维度生物 量在局部区域内存在显著聚集现象。

横纵坐标均表示距离(单位:m)。

图 4 桉树人工林各维度生物量局部 Moran's 指数空间分布

Fig. 4 Spatial distribution of local Moran's index of different component biomass in Eucalyptus plantation

表 2 桉树人工林单木各维度生物量聚类模式统计

Table 2 Statistics of biomass clustering model of Eucalyptus plantation in each dimension

日 乾壯7 agara	聚集模式一	木材生物量		树皮生物量		树干生物量		树枝生物量		树叶生物量		树冠生物量		地上生物量	
亚者性Z-score		株数	占比/%	株数	占比/%	株数	占比/%	株数	占比/%	株数	占比/%	株数	占比/%	株数	占比/%
-1.96 ~ 1.96	NS HH	353 8	79.33 1.80	359 7	80.67 1.57	351 9	78.88 2.02	382 11	85.84 2.47	365 11	82.02 2.47	364 10	81.80 2.25	353 8	79.33 1.80
	HL	9	2.02	7	1.57	8	1.80	6	1.35	9	2.02	8	1.80	9	2.02
	LH	7	1.57	7	1.57	6	1.35	5	1.12	3	0.67	6	1.35	7	1.57
	LL	6	1.35	6	1.35	7	1.57	1	0.22	1	0.22	2	0.45	6	1.35
-2.58 ~ -1.96	HL LH	9 6	2.02 1.35	9 6	2.02 1.35	11 6	2.47 1.35	5 7	1.12 1.57	8 4	1.80 0.90	8 5	1.80 1.12	9 6	2.02 1.35
1.96 ~ 2.58	HH LL	13 3	2.92 0.67	12 4	2.70 0.90	12 2	2.70 0.45	9 1	2.02 0.22	15 4	3.37 0.90	14 2	3.15 0.45	13 3	2.92 0.67
≤-2.58	HL LH	2 14	0.45 3.15	5 13	1.12 2.92	1 15	0.22 3.37	2 5	0.45 1.12	0 15	0.00 3.37	0 15	0.00 3.37	2 14	0.45 3.15
≥2.58	HH LL	14 1	3.15	9 1	2.02	16 1	3.60 0.22	6	1.35	9 1	2.02	83	1.80 0.67	14 1	3.15

2.4 桉树生物量空间异质性分析

由图 5 可知,以 5 m 为界限,在 5 m 以内随 着距离的增加各维度生物量的空间变异性增加较 为迅速,5 m 以后增速较为平缓,但是一直保持 缓慢增加的趋势。从维度来看,树叶生物量的空 间变异程度明显大于其他维度的生物量。在 0~ 30 m 的小尺度范围内, 桉树林人工林各维度生物量 的空间变异较小, 这说明桉树人工林各维度生物量 随着距离尺度的增加, 桉树人工林的空间变异逐 渐增大, 且在距离 5 m 后空间异质性变化趋于稳定。

3 结论与讨论

已有学者就大尺度单一树种的森林生物量空间效应进行研究,但几乎没有研究基于实测数据描述单木水平维度生物量的变化特征^[35-36]。本研究基于楚雄州 0.3 hm² 桉树人工林皆伐实测样地,分析了桉树人工林木材、树皮、树干、树枝、树叶、树冠和地上生物量 7 个维度生物量的空间分

布规律。从空间分布模式看, 桉树人工林全林各 维度生物量聚集特性均不是很明显。这主要是由 于桉树人工林林木分布相对均匀, 样地距离尺度 较小导致无大规模生物量聚集^[37-40]。

从全局空间自相关分析结果来看,全林各维 度生物量 Morans' I 值介于 0.0160~0.0289,说明 桉树各维度生物量均存在一定的空间自相关,桉 树生长特性会影响其各维度生物量的空间变化, 桉树人工林 7~8 a 即为成熟林,说明这一速生树 种在成熟林阶段,林木已经出现了竞争和林木分 化,这在一定程度上造成了林木生物量变化的空 间自相关。Zhang等^[41-42]采用地理加权回归 (GWR)方法来探讨桉树人工林胸径和树高关 系,指出桉树人工林的空间分布存在一定的空间 自相关,表明桉树人工林单木地上部分各维度生 物量和胸径变量在空间自相关变化特征是一致的。

局部空间自相关结果表明,近15%样木在样 地内呈现聚集分布,说明桉树人工林生物量存在 局部聚集现象。生物量高值主要集中在样地右 侧, 生物量低值集中在样地左侧及中部, 由于样 地中部林木较为稀疏,固全林地上部分生物量值 由高到低依次为样地右侧、样地左侧、样地中 部,且各维度生物量空间分布差异不大。此外, 桉树人工林单木生物量的空间分布还受到立地条 件等因素的影响,调查样地右侧立地条件较好, 林木长势也较好;样地中部土壤较为板结,且林 木较为稀疏,长势相对较差。这也造成了立地条 件好的右侧生物量高值聚集, 立地条件较差的左 侧和中部生物量低值聚集,这样的立地条件分布 与单木地上生物量值分布一致。这在一定程度上 也说明了要准确描述桉树人工林生物量变化规 律,空间效应的分析是不可忽略的^[43]。

桉树人工林各维度生物量空间变异性均随距 离的增加而增大,均在距离5m后逐渐平稳,且 树叶生物量的空间变异程度最大。在给定的距离 尺度下树叶生物量较其它维度生物量的空间变异 性更大,这是由于树叶作为桉树光合作用固定能 量的主要来源,相较于其他器官竞争更为明显, 从而导致树叶生物量在空间上的变异程度更大, 这也说明了林木各维度生物量在空间效应特征上 存在差异。胥辉^[27]同时用材积密度法和称重法对 吉林省红石林业局的8个树种60株立木树干生物 量进行测定,同时,考虑到树干不同位置的密度 存在差异可能带来的生物量测定误差,本研究在 使用材积密度法测定树干生物量时,以2m为一 个区分段分别对树干不同高度处的密度进行测 定,从而提高树干生物量测定精度。

本研究对桉树这一人工引进树种的单木地上 各维度生物量空间效应的描述,可为今后其他森 林类型的单木生物量空间效应变化分析提供理论 支撑,还可将其应用于优化和调节森林结构以充 分发挥森林的多种功能,为精准分析林业数据以 及林业生产经营实践提供参考和科学依据。由于 研究条件有限,本研究样地面积较小,树种单 一,也没有对树根这一维度生物量进行研究,且 对影响各维度生物量空间分布规律的成因和影响 机制探讨深度有限,这些都是本研究的不足之 处。今后可在条件允许的情况下扩大调查样地面 积,获取更多的样本和数据,对林木生物量空间 分布格局的形成机制开展更加深入的探讨,进一 步研究更多树种的空间效应^[37]。

[参考文献]

- [1] 毛学刚,范文义,李明泽,等.黑龙江长白山森林生物 量的时空变化分析 [J]. 植物生态学报, 2011, 35(4): 371-379.
- [2] 王晓莉,常禹,陈宏伟,等.黑龙江省大兴安岭主要森
 林生态系统 生物量分配特征 [J]. 生态学杂志, 2014, 33(6): 1437-1444.
- [3] 李海奎, 雷渊才. 中国森林植被生物量和碳储量评估 [M]. 北京: 中国林业出版社, 2010.
- [4] Zhang L J, Ma Z H, Guo L. An evaluation of spatial autocorrelation and heterogeneity in the residuals of six regression models [J]. Forest Science, 2009, 55(6): 533–548.
- [5] 农明川,付磊,李晟,等.昆明市云南松林地上生物量 空间效应分析[J].西南林业大学学报(自然科学), 2020,40(2):117-124.
- [6] 罗君, 孙振亓, 张学斌. 基于 ripley's K 函数的绿洲景观格局演变分析: 以张掖市甘州区为例 [J]. 水土保持研究, 2019, 26(4): 224-231.
- [7] 杨志辉,赵军,朱国锋,等.含植被覆盖影响的石羊河 流域土壤水分遥感估算及空间格局分析 [J]. 生态学 报, 2020, 40(23): 8826-8837.
- [8] Anselin L, Griffith D A. Do spatial effects really matter in regression analysis? [J]. Papers in Regional Science, 2005, 65(1): 11–34.
- [9] Wu J G, Jelinski D E, Luck M, et al. Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics [J]. Geographic Information Sciences, 2000, 6(1): 6–19.
- [10] Li H, Reynolds J F. On definition and quantification of heterogeneity [J]. Oikos, 1995, 73(2): 280.
- [11] 刘畅. 黑龙江省森林碳储量空间分布研究 [D]. 哈尔 滨: 东北林业大学, 2014.
- [12] 李翔.林分因子对凋落物性质空间异质性的影响[D].北京:北京林业大学,2019.
- [13] 应奎,李旭东,程东亚. 岩溶槽谷流域生态环境质量

的遥感评定 [J]. 国土资源遥感, 2020, 32(3): 173-182.

- [14] 陈彦光. 基于 moran 统计量的空间自相关理论发展 和方法改进 [J]. 地理研究, 2009, 28(6): 1449-1463.
- [15] 刘禹希,王学锋,吕少梁,等.南海北部海域大眼鲷空间自相关性[J].水产学报,2021,45(8):1361-1373.
- [16] Anselin L. Local indicators of spatial association-LISA [J]. Geographical Analysis, 2010, 27(2): 93–115.
- [17] 张维生. 黑龙江省森林空间自相关分析 [J]. 东北林业 大学学报, 2008, 36(10): 16-18.
- [18] 王维芳, 董薪明, 董小枫, 等. 森林生物量的空间自相 关性研究 [J]. 森林工程, 2018, 34(2): 35-39.
- [19] 刘磊. 基于多源数据的森林生物量与生产力估算研究:以江苏省森林资源调查数据为例 [D]. 南京:南京林业大学, 2010.
- [20] 欧光龙, 王俊峰, 肖义发, 等. 思茅松天然林单木生物 量地理加权回归模型构建 [J]. 林业科学研究, 2014, 27(2): 213-218.
- [21] 徐美玲,王俊峰,胥辉,等.思茅松天然林空间结构与 单木地上生物量分配关系 [J].云南大学学报(自然 科学版),2020,42(2):364-373.
- [22] 徐美玲, 农明川, 欧光龙. 思茅松天然林林分空间结构分析 [J]. 西南林业大学学报(自然科学), 2020, 40(3): 122-130.
- [23] 王豁然. 试论世界桉树栽培现状和我国桉树人工林 发展策略 [J]. 世界林业研究, 1989, 2(3): 48-55.
- [24] Zambrano-Monserrate M A, Ruano M A, Ormeño-Candelario V, et al. Global ecological footprint and spatial dependence between countries [J]. Journal of Environmental Management, 2020, 272: 111069.
- [25] 苏仕林,周楠. 楚雄州彝族药用植物的民族植物学研究 [J]. 安徽农学通报, 2020, 26(16): 45-49.
- [26] 胥辉,张会儒.林木生物量模型研究 [M]. 昆明:云南 科学技术出版社, 2002.
- [27] 胥辉. 立木生物量模型构建及估计方法的研究 [D]. 北京:北京林业大学, 1998.
- [28] 刘帅,张江,李建军,等.森林空间结构分析中基于 voronoi图的样地边缘校正[J].林业科学,2017, 53(1):28-37.
- [29] Perry G L W. SpPack: spatial point pattern analysis in Excel using Visual Basic for Applications (VBA) [J]. Environmental Modelling & Software, 2004, 19(6): 559–569.
- [30] Besag J. Spatial interaction and the statistical analysis of lattice systems [J]. Journal of the Royal Statistical

Society: Series B (Methodological), 1974, 36(2): 192-225.

- [31] Moran P A P. Notes on continuous stochastic phenomena [J]. Biometrika, 1950, 37(1/2): 17–23.
- [32] 孟斌, 王劲峰, 张文忠, 等. 基于空间分析方法的中国 区域差异研究 [J]. 地理科学, 2005, 25(4): 393-400.
- [33] 陈伟,王女英,柯文前.顾及自然地表要素和陆地交 通网络的空间可达性分析方法 [J]. 地理与地理信息 科学,2020,36(5): 8-13.
- [34] Penttinen A. Statistics for Marked Point Patterns[M]// The Yearbook of the Finnish Statistical Society 2006, 2006: 70-91.
- [35] 张博, 欧光龙, 孙雪莲, 等. 空间效应及其回归模型在 林业中的应用 [J]. 西南林业大学学报, 2016, 36(3): 144-152.
- [36] 何矣, 蒋瑞滨, 文敏. 基于 landsat 8 影像的汝城县森 林地上生物量遥感估算研究 [J]. 湖南林业科技, 2020, 47(3): 59-64.
- [37] 刘帅,李建军,李丹,等.林木空间分布格局分析方法 比较及其适应性[J].林业科学,2019,55(11):73-84.
- [38] 顾琪, 王平, 焦月潇, 等. 6个竹种的空间点格局分 析 [J]. 安徽农业大学学报, 2019, 46(3): 432-439.
- [39] 欧光龙, 胥辉. 森林生物量模型研究综述 [J]. 西南林 业大学学报(自然科学), 2020, 40(1): 1-11.
- [40] 王琰. 吕梁山森林生态系统碳密度及空间分布格局[D]. 太原: 山西大学, 2019.
- [41] Zhang L J, Bi H Q, Cheng P F, et al. Modeling spatial variation in tree diameter-height relationships [J]. Forest Ecology and Management, 2004, 189(1/2/3): 317–329.
- [42] Zhang L J, Gove J H, Heath L S. Spatial residual analysis of six modeling techniques [J]. Ecological Modelling, 2005, 186(2): 154–177.
- [43] 刘畅,胥辉,欧光龙.思茅松天然林单木含碳量空间 异质性分析 [J].西南林业大学学报(自然科学), 2019, 39(4): 76-82.

(责任编辑 陆 驰)

