Xuelian Tan, Xiaoli Jing, Lei Kan, Zhiyao Su, Lu Zhang. Spatial Point Patterns of Snags of Castanopsis chinensis and Schima superba in a Subtropic Evergreen Broad-leaved Forest[J]. Journal of Southwest Forestry University, 2019, 39(1): 132-138. DOI: 10.11929/j.swfu.201810020
Citation: Xuelian Tan, Xiaoli Jing, Lei Kan, Zhiyao Su, Lu Zhang. Spatial Point Patterns of Snags of Castanopsis chinensis and Schima superba in a Subtropic Evergreen Broad-leaved Forest[J]. Journal of Southwest Forestry University, 2019, 39(1): 132-138. DOI: 10.11929/j.swfu.201810020

Spatial Point Patterns of Snags of Castanopsis chinensis and Schima superba in a Subtropic Evergreen Broad-leaved Forest

More Information
  • Received Date: October 10, 2018
  • Revised Date: December 19, 2018
  • Available Online: December 30, 2018
  • Published Date: December 31, 2018
  • We established 1000 quadrats in 10 hm2 subtropic evergreen broad-leaved forest located in the Guangdong Kanghe Provincial Natrue Reserve. Using spatial point pattern analysis and marked point pattern analysis with dominant species of Castanopsis chinensis and Schima superba, we determined the spatial point pattern of individual and basal area to explore the formation of spatial patterns of snags. The results showed that the most snags of C. chinensis and S. superba were those with small DBH, and the abundance of snags decreased with the DBH increased. The snags of C. chinensis showed an aggregated distribution at the scale of 0−50 m, and the aggregation declined as the scale enlarged; the snags ofS. superba showed randomly distribution at the scale of 4.4−8.6 m and 14.1−50 m, and aggregated at local scale of 0−4.3 m and 8.7−14.0 m. The basal area ofC. chinensis and S. superba showed that sangs were independent, which indicated no competition among snags. C. chinensis and Schima superba died more in their early stages. The formation of snags of these two species might be influenced by dispersal limitation of seeds and density dependence as well as environment filter, the lager trees might die because of intrinsic aging.
  • Cousins S J M, Battles J J, Sanders J E, et al. Decay patterns and carbon density of standing dead trees in California mixed conifer forests [J]. Forest Ecology and Management, 2015, 353: 136−147. DOI: 10.1016/j.foreco.2015.05.030
    赵嘉诚, 李海奎. 广东省森林死木碳库特征 [J]. 生态学报, 2018, 38(2): 550−559
    顾丽, 屈宏胜, 王广儒, 等. 黄土高原天然次生林木质残体的基础特征 [J]. 福建农林大学学报(自然科学版), 2016, 45(1): 30−34
    Carmichael M J, Helton A M, White J C, et al. Standing Dead Trees are a Conduit for the Atmospheric Flux of CH4 and CO2 from Wetlands [J]. Wetlands, 2018, 38(1): 133−143. DOI: 10.1007/s13157-017-0963-8
    Riffell S, Verschuyl J, Miller D, et al. Biofuel harvests, coarse woody debris, and biodiversity: A meta-analysis [J]. Forest Ecology and Management, 2011, 261(4): 878−887. DOI: 10.1016/j.foreco.2010.12.021
    Pasanen H, Junninen K, Boberg J, et al. Life after tree death: Does restored dead wood host different fungal communities to natural woody substrates? [J]. Forest Ecology and Management, 2018, 409: 863−871. DOI: 10.1016/j.foreco.2017.12.021
    卢志军, 刘福玲, 吴浩, 等. 八大公山常绿落叶阔叶混交林枯立木物种组成、大小级与分布格局 [J]. 生物多样性, 2015, 23(2): 167−173
    Onodera K, Tokuda S. Do larger snags stand longer?: snag longevity in mixed conifer–hardwood forests in Hokkaido, Japan [J]. Annals of Forest Science, 2015, 72(5): 621−629. DOI: 10.1007/s13595-015-0478-5
    安云, 丁国栋, 高广磊, 等. 华北土石山区天然次生林枯立木数量特征与分布格局 [J]. 水土保持通报, 2012, 32(4): 246−250
    Oberle B, Ogle K, Zanne A E, et al. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests [J]. PLOS ONE, 2018, 13(5): e0196712. DOI: 10.1371/journal.pone.0196712
    郭屹立, 王斌, 向悟生, 等. 桂西南喀斯特季节性雨林枯立木的空间格局及生境关联性分析 [J]. 广西植物, 2016, 36(2): 154−161
    王斌, 向悟生, 丁涛, 等. 弄岗喀斯特季节性雨林枯立木多度的空间分布及影响因子 [J]. 科学通报, 2014, 59(35): 3479−3490
    梅军林, 庄枫红, 马姜明, 等. 桂林喀斯特地区克隆生长红背山麻杆种群的点格局分析 [J]. 生态学报, 2017, 37(9): 3164−3171
    Baddeley A, Turner R. spatstat: An R Package for Analyzing Spatial Point Patterns [J]. Journal of Statistical Software, 2005, 12(12): 1−42.
    玉宝, 张秋良, 王立明. 兴安落叶松过伐林枯立木分布格局特征分析 [J]. 林业科学研究, 2015, 28(1): 81−87
    Grabarnik P, Myllymäki M, Stoyan D. Correct testing of mark independence for marked point patterns [J]. Ecological Modelling, 2011, 222(23/24): 3888−3894.
    徐明锋, 胡砚秋, 李文斌, 等. 土壤养分对亚热带天然林物种分布的影响 [J]. 中南林业科技大学学报, 2014, 34(9): 91−97 DOI: 10.3969/j.issn.1673-923X.2014.09.018
    Iwashita D K, Litton C M, Giardina C P. Coarse woody debris carbon storage across a mean annual temperature gradient in tropical montane wet forest [J]. Forest Ecology and Management, 2013, 291(2): 336−343.
    Sweeney O F M, Martin R D, Irwin S, et al. A lack of large-diameter logs and snags characterises dead wood patterns in Irish forests [J]. Forest Ecology and Management, 2010, 259(10): 2056−2064. DOI: 10.1016/j.foreco.2010.02.016
    贾美玉, 张金屯, 梁钰, 等. 五台山林线过渡带华北落叶松格局过程和尺度分析 [J]. 生态学报, 2018, 38(20): 1−8
    Gray L, He F. Spatial point-pattern analysis for detecting density-dependent competition in a boreal chronosequence of Alberta [J]. Forest Ecology and Management, 2009, 259(1): 98−106. DOI: 10.1016/j.foreco.2009.09.048
    胡砚秋, 李文斌, 崔佳玉, 等. 亚热带常绿阔叶林优势种个体及生物量的点格局分析 [J]. 生态学报, 2016, 36(4): 1066−1072
    杨方方, 李跃林. 鼎湖山粗死木质残体生物量特征 [J]. 应用与环境生物学报, 2011, 17(5): 750−752
    周小勇, 黄忠良, 史军辉, 等. 鼎湖山针阔混交林演替过程中群落组成和结构短期动态研究 [J]. 热带亚热带植物学报, 2004, 12(4): 323−330 DOI: 10.3969/j.issn.1005-3395.2004.04.006
    张璐, 敬小丽, 苏志尧, 等. 亚热带常绿阔叶林枯立木与冠层结构的关系 [J]. 森林与环境学报, 2018, 38(1): 64−70
  • Cited by

    Periodical cited type(4)

    1. 王广平,李成,王书砚,刘超,杨君珑. 宁夏罗山青海云杉林空间分布特征研究. 农业科学研究. 2023(03): 10-15+23 .
    2. 粟佳琳,王娟,范春雨,张春雨,赵秀海. 吉林蛟河针阔混交林群落邻体竞争效应. 林业科学. 2022(05): 187-194 .
    3. 张毅锋,汤孟平. 天目山常绿阔叶林空间结构动态变化特征. 生态学报. 2021(05): 1959-1969 .
    4. 黄金莲,崔鸿侠,唐万鹏,雷静品,周文昌,胡琛,马国飞. 神农架华山松人工林土壤呼吸特征及其受枯立木分布的影响. 生态环境学报. 2020(09): 1776-1783 .

    Other cited types(4)

Catalog

    Article views (2933) PDF downloads (57) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return