Xiaoxue Lang, Yanhong Xu, Qingtai Shu, Zhuoya Zhang, Fuming Xie, Li Zi. Nonparametric Model for Remote Sensing Estimating the Volume of Spruce-Fir Forest in Shangri-La[J]. Journal of Southwest Forestry University, 2019, 39(1): 146-151. DOI: 10.11929/j.swfu.201811019
Citation: Xiaoxue Lang, Yanhong Xu, Qingtai Shu, Zhuoya Zhang, Fuming Xie, Li Zi. Nonparametric Model for Remote Sensing Estimating the Volume of Spruce-Fir Forest in Shangri-La[J]. Journal of Southwest Forestry University, 2019, 39(1): 146-151. DOI: 10.11929/j.swfu.201811019

Nonparametric Model for Remote Sensing Estimating the Volume of Spruce-Fir Forest in Shangri-La

More Information
  • Received Date: August 12, 2018
  • Revised Date: November 28, 2018
  • Available Online: December 28, 2018
  • Published Date: December 31, 2018
  • Selected the typical forest types of spruce-fir forests in Shangri-La City, located in Diqing of Northwest Yunnan, as the research objects. Using Landsat 8 remote sensing image data combined with ground angle control plot survey data, the BPNN and SVM estimation models of spruce-fir were established and compared. The results show that the precision of the SVM model is obviously better than that of the BPNN model, its R2、rRMSE and P are 0.67, 27.91% and 77.09% respectively. The statistical error between the total volume of spruce-fir forests in Shangri-La City and the results of the second-class survey of traditional forest resources is only 1.14% by using SVM remote sensing estimation model, which shows that SVM estimation model could provide support for forest resources.
  • 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006.
    李崇贵, 赵宪文, 李春干. 森林蓄积量遥感估测理论与实现[M]. 北京: 科学出版社, 2006: 1.
    何亚娟, 潘学标, 裴志远, 等. 基于SPOT遥感数据的甘蔗叶面积指数反演和产量估算 [J]. 农业机械学报, 2013, 44(5): 226−231
    黄平, 候长谋, 杨燕琼. 基于RS、GIS的杉木林分蓄积量判读模型研究 [J]. 中南林业调查规划, 2003, 22(1): 25−27
    Pai P F, Hong W C. Support vector machines with simulated annealing algorithms inelectricity load forecasting [J]. Energy Conversion and Management, 2005, 46(17): 2669−2688. DOI: 10.1016/j.enconman.2005.02.004
    杨永恬. 基于多源遥感数据的森林蓄积量估测方法研究[D]. 北京: 中国林业科学研究院, 2010.
    刘治国, 王弟, 张红, 等. 基于遥感数据的山西东部油松林蓄积量估测方法研究 [J]. 山西大学学报(自然科学版), 2017, 40(1): 187−194
    李际平, 邓立斌, 何建华. 基于人工神经网络的森林资源预测研究 [J]. 中南林学院学报, 2001, 21(4): 19: 22
    王臣立, 牛铮, 郭治兴, 等. 基于植被指数和神经络的热带人工林地上蓄枳遥感估测 [J]. 生态环境学报, 2009, 18(5): 1830−1834 DOI: 10.3969/j.issn.1674-5906.2009.05.044
    岳彩荣. 香格里拉县森林生物量遥感估测研究[D]. 北京: 北京林业大学, 2011.
    汉卿. 森林蓄积量的支持向量机估测理论方法研究[D]. 西安: 西安科技大学, 2014.
    刘青. 人工神经网络遥感影像分类系统的设计与实现[D]. 昆明: 昆明理工大学, 2010.
    Cherkassky V, Ma Y Q. Practical selection of SVM parameters and noise estimation for SVM regression [J]. Neural Networks, 2004, 17(1): 113−126. DOI: 10.1016/S0893-6080(03)00169-2

Catalog

    Article views (1972) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return