Peihua Gan, Dan Li, Dezhou Shen, Anpei Zhou, Zhongli Xie, Chengzhong He. Analysis on Genetic Diversity and Genetic Structure of Different Floral Patterns of Camellia reticulate f. simplex[J]. Journal of Southwest Forestry University, 2019, 39(4): 46-52. DOI: 10.11929/j.swfu.201902066
Citation: Peihua Gan, Dan Li, Dezhou Shen, Anpei Zhou, Zhongli Xie, Chengzhong He. Analysis on Genetic Diversity and Genetic Structure of Different Floral Patterns of Camellia reticulate f. simplex[J]. Journal of Southwest Forestry University, 2019, 39(4): 46-52. DOI: 10.11929/j.swfu.201902066

Analysis on Genetic Diversity and Genetic Structure of Different Floral Patterns of Camellia reticulate f. simplex

More Information
  • Received Date: February 21, 2019
  • Revised Date: March 24, 2019
  • Available Online: April 25, 2019
  • Published Date: June 30, 2019
  • Fluorescent AFLP markers were used to analyze the genetic varieties of 90 samples from 3 natural floral patterns of Camellia reticulate f. simplex collected from Tengchong County. The results showed that a total of 697 DNA fragments were produced by 7 AFLP primer combinations. At species level, all DNA fragments were found to be polymorphic (100%), effective number of alleles (Ne) was 1.361 4, Nei’s gene diversity (H) was 0.257 6, and Shannon’s information index was (I) 0.421 5. All of the genetic diversity parameters revealed that there was a relatively high level of genetic diversity in C. reticulate f. simplex. On the level of natural floral pattern, the scope of Hnfp and Infp was from 0.241 8 to 0.255 8 and from 0.395 9 to 0.413 2, respectively. The order of genetic diversity level was single floral pattern >semi-double floral pattern >double floral pattern. Genetic differentiation coefficient (Gst) among 3 natural floral patterns was 0.034 5, which was consistent with the result of AMOVA (Φst=0.056). It is suggested that higher degree of genetic varieties within natural floral pattern were the main source of genetic diversity in C. reticulate f. simplex, and close protective attention should be payed to individuals. The 3 natural floral patterns were divided into 2 groups by UPGMA analysis based on Nei’s genetic distances. Of which, one group was composed of simple floral pattern, and the other group was composed of semi-double floral pattern and double floral pattern. Furthermore, UPGMA clustering result showed that 90 individuals were divided into mainly 3 groups based on Nei’s genetic distances among individuals, and clearly separate the 3 natural types. This clustering result revealed that semi-double floral pattern was a transitional pattern between single floral pattern and double floral pattern, and the 3 natural floral patterns occupied their own unique genetic material basis. Therefore, it was scientific and reasonable that C. reticulate f. simplex was classified into 3 natural floral patterns.
  • 中国科学院昆明植物研究所. 云南山茶花[M]. 昆明: 云南人民出版社, 1981: 3-5.
    陈辉, 刘国敏, 刘玉宝, 等. 油茶丰产林培育[M]. 福州: 福建科学技术出版社, 2009: 15-20.
    李世成. 云南省腾冲县红花油茶资源调查及利用分析 [J]. 西南林学院学报, 2008, 28(3): 11−13, 19.
    袁其琼, 郭玉红, 司马永康, 等. 云南省腾冲红花油茶资源及其开发利用 [J]. 陕西林业科技, 2017(4): 64−67. DOI: 10.3969/j.issn.1001-2117.2017.04.017
    李旦, 周安佩, 潘瑶, 等. 腾冲红花油茶的研究进展 [J]. 西部林业科学, 2015, 44(3): 123−127.
    闵天禄. 山茶属山茶组植物的分类, 分化和分布 [J]. 云南植物研究, 1998, 20(2): 127−148.
    杨忠品, 谢胤, 辛成莲, 等. 高黎贡山以西油用腾冲红花油茶种质资源调查 [J]. 林业调查规划, 2015, 40(1): 86−90. DOI: 10.3969/j.issn.1671-3168.2015.01.019
    黄佳聪, 何俊, 尹瑞萍, 等. 腾冲红花油茶自然和人工种群种实性状变异研究 [J]. 北京林业大学学报, 2010, 32(5): 94−101.
    沈立新, 梁洛辉, 王庆华, 等. 腾冲红花油茶自然类型及其品种类群划分 [J]. 林业资源管理, 2009(6): 75−79. DOI: 10.3969/j.issn.1002-6622.2009.06.016
    司马永康, 郭玉红, 徐德兵, 等. 云南红花油茶基于花瓣数量的分类 [J]. 西部林业科学, 2018, 47(5): 80−88.
    徐德兵, 郭玉红, 司马永康, 等. 腾冲红花油茶花朵在野生半野生状态下的自然变异 [J]. 西部林业科学, 2018, 47(5): 46−52.
    俞德浚. 云南山茶花栽培历史和今后发展方向 [J]. 园艺学报, 1985, 12(2): 131−136.
    俞德浚, 冯辉宗. 云南山茶花图志[M]. 北京: 科学出版社, 1958: 3-7.
    Belaj A, Cipriani G, Testolin R, et al. Characterization and identification of the main Spanish and Italian olive cultivars by simple-sequence-repeat markers [J]. HortScience, 2004, 39(7): 1557−1561. DOI: 10.21273/HORTSCI.39.7.1557
    von Kohn C, Conrad K, Kramer M, et al. Genetic diversity of Magnolia ashei characterized by SSR markers [J]. Conservation Genetics, 2018, 19(4): 923−936. DOI: 10.1007/s10592-018-1065-8
    Feng S J, Liu Z S, Chen L, et al. Phylogenetic relationships among cultivated Zanthoxylum species in China based on cpDNA markers [J]. Tree Genetics & Genomes, 2016, 12(3): 45.
    Helmkampf M, Wolfgruber T K, Bellinger M R, et al. Phylogenetic relationships, breeding implications, and cultivation history of Hawaiian Taro (Colocasia esculenta) through genome-wide SNP genotyping [J]. Journal of Heredity, 2018, 109(3): 272−282. DOI: 10.1093/jhered/esx070
    Yeh F C, Yang R C, Boyle T J. Popgene: Microsoft windows - based freeware for population genetic analysis: version 1.32[M]. Canada: Molecular Biology and Biotechnology Centre, University of Alberta, 1999.
    Meirmans P G. Using the AMOVA framework to estimate a standardized genetic differentiation measure [J]. Evolution, 2006, 60(11): 2399−2402. DOI: 10.1554/05-631.1
    Tamura K, Peterson D, Peterson N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731−2739. DOI: 10.1093/molbev/msr121
    靳高中, 任华东, 姚小华, 等. 滇西腾冲红花油茶天然居群种实表型性状变异分析 [J]. 南京林业大学学报(自然科学版), 2013, 37(6): 53−58.
    靳高中, 杨水平, 姚小华, 等. 腾冲红花油茶果实主要性状变异分析 [J]. 西南大学学报(自然科学版), 2011, 33(12): 48−53.
    周志美, 任华东, 俞新水, 等. 腾冲红花油茶果实形态划分及经济性状差异 [J]. 林业科技开发, 2013, 27(5): 67−69. DOI: 10.3969/j.issn.1000-8101.2013.05.017
    沈立新, 梁洛辉, 张文, 等. 腾冲红花油茶主要产果类型的果实性状分析 [J]. 西部林业科学, 2009, 38(4): 9−15. DOI: 10.3969/j.issn.1672-8246.2009.04.003
    靳高中, 姚小华, 任华东, 等. 腾冲红花油茶产量及脂肪酸组成变异研究 [J]. 江西农业大学学报, 2012, 34(3): 492−498. DOI: 10.3969/j.issn.1000-2286.2012.03.015
    范彩慧. 腾冲红花油茶产量及脂肪酸组成的变异研究 [J]. 西部林业科学, 2012, 41(1): 108−115. DOI: 10.3969/j.issn.1672-8246.2012.01.017
    Xin T, Huang W J, de Riek J, et al. Genetic diversity, population structure, and traditional culture of Camellia reticulata [J]. Ecology and Evolution, 2017, 7(21): 8915−8926. DOI: 10.1002/ece3.2017.7.issue-21
    Wang B Y, Ruan Z Y. Genetic diversity and differentiation in Camellia reticulata (Theaceae) polyploid complex revealed by ISSR and ploidy [J]. Genetics and Molecular Research, 2012, 11(1): 503−511. DOI: 10.4238/2012.March.6.3
    刘婵. 云南山茶花种质资源遗传多样性的ISSR分析[D]. 昆明: 西南林业大学, 2011.
  • Cited by

    Periodical cited type(6)

    1. 韦开萍,蒙进芳,郭晓春. 我国几种油茶植物染色体研究进展. 安徽农业科学. 2025(02): 7-12 .
    2. 李归林,黄佳聪,蒋华,杨晓霞,周娟,董琼. 不同传粉模式对腾冲红花油茶坐果率的影响. 云南农业大学学报(自然科学). 2024(01): 120-124 .
    3. 杨茜,蒙进芳. 腾冲红花油茶生殖研究进展. 绿色科技. 2022(03): 114-118 .
    4. 陆婷,陈少瑜,吴涛,肖良俊. 迪庆州核桃种质资源的遗传多样性与遗传结构. 西部林业科学. 2021(02): 71-77 .
    5. 田仟仟,黄建建,温强,周文才,黄彬,龚春,徐林初. 油茶分子育种现状与趋势. 南方林业科学. 2021(05): 53-59+73 .
    6. 朱秋蓉,石卓功. 腾冲红花油茶种质资源与研究现状. 安徽农业科学. 2020(10): 12-15+18 .

    Other cited types(3)

Catalog

    Article views (2142) PDF downloads (43) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return