Chao Zhang, Zhexiu Yu, Tian Huang, Yi Zhang, Hengchun Luo, Xiaohua Niu. The Study on Fresh Biomass Estimation of Zizania latifolia Based on Different Spectral Transformations of Spectral Reflectance[J]. Journal of Southwest Forestry University, 2019, 39(6): 105-115. DOI: 10.11929/j.swfu.201903119
Citation: Chao Zhang, Zhexiu Yu, Tian Huang, Yi Zhang, Hengchun Luo, Xiaohua Niu. The Study on Fresh Biomass Estimation of Zizania latifolia Based on Different Spectral Transformations of Spectral Reflectance[J]. Journal of Southwest Forestry University, 2019, 39(6): 105-115. DOI: 10.11929/j.swfu.201903119

The Study on Fresh Biomass Estimation of Zizania latifolia Based on Different Spectral Transformations of Spectral Reflectance

More Information
  • Received Date: March 19, 2019
  • Revised Date: July 26, 2019
  • Available Online: August 30, 2019
  • Published Date: October 31, 2019
  • The reflectance spectrum were collected and fresh biomass were measured for Zizania latifolia in situ of Jianhu Wetland, and the analysis of reflectance spectral for Z. latifolia based on 24 spectral transformations. Then establishment of the fresh biomass estimation models based on the characteristic bands selection were sensitive to biomass on analysis of the full bands (350−2 350 nm) of 16 spectral transformations. The results showed that spectral characteristics can be more easily analyzed by the different spectral transformation. The visible band characteristics was enhanced by logarithmic reciprocal and reciprocal transformation. The near infrared band characteristics was enhanced by first-order derivative of logarithmic reciprocal transformation. The short-wave infrared band characteristics was enhanced by second-order derivatives of reciprocal and second-order derivative of logarithmic reciprocal. And 4−5 scale continuous wavelet transformation were suitable for the original spectral characteristics analyzing. The highest correlation coefficient of 0.734 after continuous wavelet transformation, and followed second-order derivative transformation with the highest correlation coefficient of −0.730 in all spectral transformations. The best effective model on estimating fresh biomass of Z. latifolia was multivariate regression model based on second-order derivative of cubic root transformation, R2, RMSE, P and RPD were 0.88, 1 044.90 g/m2, 83.95% and 2.64, respectively.
  • 章文龙, 曾从盛, 仝川, 等. 闽江口沼泽植被地上鲜生物量与植株密度高光谱遥感估算 [J]. 自然资源学报, 2013, 28(12): 2056−2067. DOI: 10.11849/zrzyxb.2013.12.004
    宗玮, 林文鹏, 周云轩, 等. 基于遥感的上海崇明东滩湿地典型植被净初级生产力估算 [J]. 长江流域资源与环境, 2011, 20(11): 1355−1360.
    赵志龙, 张镱锂, 刘林山, 等. 青藏高原湿地研究进展 [J]. 地理科学进展, 2014, 33(9): 1218−1230.
    彭涛. 3S技术支持下的高原湿地纳帕海景观格局变化研究[D]. 昆明: 西南林学院, 2008.
    汤蕾, 赵冰梅, 许东, 等. 国外湿地研究进展 [J]. 安徽农业科学, 2008, 36(1): 299−301. DOI: 10.3969/j.issn.0517-6611.2008.01.127
    李凤秀, 张柏, 刘殿伟, 等. 洪河自然保护区乌拉苔草生物量高光谱遥感估算模型 [J]. 湿地科学, 2008, 6(1): 51−59.
    赵天舸, 于瑞宏, 张志磊, 等. 湿地植被地上生物量遥感估算方法研究进展 [J]. 生态学杂志, 2016, 35(7): 1936−1946.
    吉一涛, 舒清态, 黄田, 等. 基于光谱特征参量的高山松叶片氮素含量估测模型研究 [J]. 西南林业大学学报(自然科学), 2018, 38(3): 151−156.
    张雪茹, 冯美臣, 杨武德, 等. 基于光谱变换的低温胁迫下冬小麦叶绿素含量估测研究 [J]. 中国生态农业学报, 2017, 25(9): 1351−1359.
    王慧芳, 王纪华, 董莹莹, 等. 冬小麦冻害胁迫高光谱分析与冻害严重度反演 [J]. 光谱学与光谱分析, 2014, 34(5): 1357−1361. DOI: 10.3964/j.issn.1000-0593(2014)05-1357-05
    李岚涛, 汪善勤, 任涛, 等. 基于高光谱的冬油菜叶片磷含量诊断模型 [J]. 农业工程学报, 2016, 32(14): 209−218. DOI: 10.11975/j.issn.1002-6819.2016.14.028
    Sun Y H, Zhou J. Estimating wetland vegetation fresh biomass with hyperspectral indices[C]//2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, June 1−3, 2012. Nanjing, Jiangsu, China. New York, USA: IEEE, 2012.
    Adam E, Mutanga O, Abdel-Rahman E M, et al. Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression [J]. International Journal of Remote Sensing, 2014, 35(2): 693−714. DOI: 10.1080/01431161.2013.870676
    Luo S Z, Wang C, Xi X H, et al. Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data [J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 58: 107−117. DOI: 10.1016/j.jag.2017.01.016
    李伟娜. 多角度高光谱CHRIS数据估测隆宝滩湿地植被生物量的研究[D]. 北京: 中国林业科学研究院, 2017.
    卢霞, 王晓静, 孙华, 等. 海滨湿地碱蓬地上鲜生物量高光谱估算研究 [J]. 海洋湖沼通报, 2017(2): 96−100.
    Savitzky A, Golay M. Smoothing and differentiation of data by simplified least squares procedures [J]. Analytical Chemistry, 1964, 36(8): 1627−1639. DOI: 10.1021/ac60214a047
    史舟. 土壤地面高光谱遥感原理与方法[M]. 北京: 科学出版社, 2014.
    林辉, 臧卓, 刘秀英. 森林树种高光谱遥感研究[M]. 北京: 中国林业出版社, 2011.
    何挺, 王静, 林宗坚, 等. 土壤有机质光谱特征研究 [J]. 武汉大学学报(信息科学版), 2006, 31(11): 975−979.
    钟燕. 基于HSI高光谱数据的耕地土壤重金属镉、铅含量遥感反演[D]. 雅安: 四川农业大学, 2016.
    黄敬峰, 王福民, 王秀珍. 水稻高光谱遥感实验研究[M]. 杭州: 浙江大学出版社, 2010.
    孙林, 程丽娟. 植被叶片生化组分的光谱响应特征分析 [J]. 光谱学与光谱分析, 2010, 30(11): 3031−3035. DOI: 10.3964/j.issn.1000-0593(2010)11-3031-05
    黄灵光, 周学林. 南矶湿地国家自然保护区典型植被光谱波段特征分析及建库 [J]. 湖北农业科学, 2018, 57(11): 103−106.
    蒋金豹, 陈云浩, 李京, 等. 胁迫条件下的植物高光谱遥感实验研究: 以条锈病、水浸与CO2泄漏胁迫为例[M]. 北京: 科学出版社, 2016.
    廖钦洪, 顾晓鹤, 李存军, 等. 基于连续小波变换的潮土有机质含量高光谱估算 [J]. 农业工程学报, 2012, 28(23): 132−139, 298.
    李粉玲. 关中地区冬小麦叶片氮素高光谱数据与卫星影像定量估算研究[D]. 杨凌: 西北农林科技大学, 2016.
    吕瑞兰. 小波阈值去噪的性能分析及基于能量元的小波阈值去噪方法研究[D]. 杭州: 浙江大学, 2003.
    孙延奎. 小波分析及其应用[M]. 北京: 机械工业出版社, 2005.
    Chang C W, Laird D A, Mausbach M J, et al. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties [J]. Soil Science Society of America Journal, 2001, 65(2): 480. DOI: 10.2136/sssaj2001.652480x
    司海青, 姚艳敏, 王德营, 等. 含水率对土壤有机质含量高光谱估算的影响 [J]. 农业工程学报, 2015, 31(9): 114−120. DOI: 10.11975/j.issn.1002-6819.2015.09.018
    徐新刚, 赵春江, 王纪华, 等. 新型光谱曲线特征参数与水稻叶绿素含量间的关系研究 [J]. 光谱学与光谱分析, 2011, 31(1): 188−191. DOI: 10.3964/j.issn.1000-0593(2011)01-0188-04
    付元元, 王纪华, 杨贵军, 等. 应用波段深度分析和偏最小二乘回归的冬小麦生物量高光谱估算 [J]. 光谱学与光谱分析, 2013, 33(5): 1315−1319. DOI: 10.3964/j.issn.1000-0593(2013)05-1315-05
    邓兵, 杨武年, 慕楠, 等. 基于光谱分析与角度斜率指数的植被含水量研究 [J]. 光谱学与光谱分析, 2016, 36(8): 2546−2552.

Catalog

    Article views (955) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return