Ning Peng, Wang Fei, Cheng Xiaomao, Huang Xiaoxia. Responses of Photosynthetic Characteristics to Different Altitudes of Quercus aquifolioides[J]. Journal of Southwest Forestry University, 2021, 41(6): 47-53. DOI: 10.11929/j.swfu.202006067
Citation: Ning Peng, Wang Fei, Cheng Xiaomao, Huang Xiaoxia. Responses of Photosynthetic Characteristics to Different Altitudes of Quercus aquifolioides[J]. Journal of Southwest Forestry University, 2021, 41(6): 47-53. DOI: 10.11929/j.swfu.202006067

Responses of Photosynthetic Characteristics to Different Altitudes of Quercus aquifolioides

More Information
  • Received Date: June 23, 2020
  • Revised Date: August 01, 2020
  • Available Online: October 14, 2020
  • Published Date: November 19, 2021
  • The leaf photosynthesis and nutrient accumulation of Quercus aquifolioides were studied at different altitudes. The results are as follow: the average leaf areaand specific leaf area of Q. aquifolioides presented the change trend of first increasing and then decreasing with the increase of altitude, reaching the maximum value at 3050 m; the length-width ratio of leaves was significantly lower than other elevations at 2750 m and 3050 m. The instantaneous maximum net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentration, showed a change pattern of first increasing and then decreasing with the increase of altitude. The contents of C and N per area decreased first and then increased with the increase of altitude, while the content of P per area first increased and then decreased with elevation, and the turning point was all at 3050 m. The photosynthetic nitrogen utilization efficiency and long-term nitrogen utilization efficiency reached their maximum value at 3050 m. The δ13C value decreases first and then increases with the increase of altitude, reaching the lowest level at 3050 m and the highest level at 3500 m respectively. In conclusion, it was concluded that the altitude of 3050 m is the most suitable growth area for Q. aquifolioides with the highest photosynthetic efficiency and faster growth. The environment with high altitude inhibited the growth and photosynthetic carbon assimilation while improved the water utilization efficiency of Q. aquifolioides.
  • 吴飞洋, 柳新红, 董峰平, 等. 光照和土壤对乌桕秋季叶片色素及可溶性糖的影响 [J]. 西南林业大学学报(自然科学), 2019, 39(6): 41−48.
    王佳佳, 张明如, 高磊, 等. 遮荫和氮素添加对芒萁光合特性与抗氧化酶活性的影响 [J]. 西南林业大学学报(自然科学), 2019, 39(6): 24−32.
    杜流姗, 陆琦, 梁紫嫣, 等. 贡嘎山海螺沟冰川退缩区原生演替不同阶段优势植物光合生理特征 [J]. 生态环境学报, 2019, 28(12): 2356−2363.
    尹鹏, 黄娇, 廖金花, 等. 峨眉山不同海拔迎阳报春花的生理特性 [J]. 暨南大学学报(自然科学与医学版), 2019, 40(6): 550−555.
    李惠梅, 师生波. 不同海拔麻花艽植物光合特性的比较 [J]. 安徽农业科学, 2008, 36(11): 4799−4804. DOI: 10.3969/j.issn.0517-6611.2008.11.019
    胡启鹏, 郭志华, 孙玲玲, 等. 长白山林线树种岳桦幼树叶功能型性状随海拔梯度的变化 [J]. 生态学报, 2013, 33(12): 3594−3601.
    姜永雷, 邓莉兰, 黄晓霞. 不同海拔川滇高山栎叶片的解剖结构特征 [J]. 江苏农业科学, 2015, 43(1): 195−198.
    刘兴良, 贾程, 何飞, 等. 巴郎山川滇高山栎群落植物科组成的海拔梯度特征 [J]. 四川林业科技, 2015, 36(2): 1−9. DOI: 10.3969/j.issn.1003-5508.2015.02.001
    李玲娟, 熊勤犁, 潘开文, 等. 土壤原生动物对川滇高山栎恢复时间的响应及生长季动态 [J]. 生物多样性, 2015, 23(6): 793−801. DOI: 10.17520/biods.2015121
    程小毛, 王振章, 姜永雷, 等. 滇西北玉龙雪山不同海拔川滇高山栎遗传多样性分析 [J]. 分子植物育种, 2016, 14(5): 1329−1335.
    赵广, 朱万泽, 谢静, 等. 不同海拔川滇高山栎丙二醛和脯氨酸含量及其影响因子 [J]. 中南林业科技大学学报, 2015, 35(7): 69−73, 104.
    黄晓霞, 冯程程, 姜永雷, 等. 云南玉龙雪山川滇高山栎生理生化特性对海拔梯度的响应 [J]. 西部林业科学, 2015, 44(4): 1−6, 24.
    沈志强, 华敏, 丹曲, 等. 藏东南川滇高山栎种群不同生长阶段的空间格局与关联性 [J]. 应用生态学报, 2016, 27(2): 387−394.
    杨文宏, 和加卫, 黄杏娥, 等. 玉龙雪山乡土树种资源调查 [J]. 江西农业学报, 2019, 31(5): 41−48. DOI: 10.3969/j.issn.1001-8581.2019.05.008
    冷泉. 玉龙雪山省级自然保护区保护价值及效益评价浅析 [J]. 农业开发与装备, 2019(3): 64−66.
    高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
    刘贤赵, 宿庆, 李嘉竹, 等. 控温条件下C3、C4草本植物碳同位素组成对温度的响应 [J]. 生态学报, 2015, 35(10): 3278−3287.
    杨思琪, 赵旭剑, 森道, 等. 天山中段植物叶片碳氮磷化学计量及其海拔变化特征 [J]. 干旱区研究, 2017, 34(6): 1371−1379.
    唐敬超. 南亚热带及热带不同树种光合氮利用效率及其影响因素[D]. 北京: 中国林业科学研究院, 2017.
    蒋艾平, 姜景民, 刘军. 檫木叶片性状沿海拔梯度的响应特征 [J]. 生态学杂志, 2016, 35(6): 1467−1474.
    Reich P B, Ellsworth D S, Walters M B, et al. Generality of leaf trait relationships: a test across six biomes [J]. Ecology, 1999, 80(6): 1955−1969. DOI: 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2
    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821−827. DOI: 10.1038/nature02403
    韩威, 刘超, 樊艳文, 等. 长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征 [J]. 北京林业大学学报, 2014, 36(4): 47−53.
    叶宏达, 达布希拉图, 沙本才, 等. 海拔梯度对马铃薯光合特性和荧光特性的影响 [J]. 作物杂志, 2017(5): 93−99.
    金高明. 黄土高原不同海拔高度的富士苹果光合特性及生理效应的比较研究[D]. 甘肃农业大学, 2015.
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology, 1982, 33(1): 317−345. DOI: 10.1146/annurev.pp.33.060182.001533
    李永霞, 索郎拉措, 杨小林. 急尖长苞冷杉叶片结构和光合特性对海拔高度的响应 [J]. 厦门大学学报(自然科学版), 2018, 57(4): 503−509.
    高冠龙, 冯起, 张小由, 等. 植物叶片光合作用的气孔与非气孔限制研究综述 [J]. 干旱区研究, 2018, 35(4): 929−937.
    刘一诺, 敖曼, 李波, 等. UV-B辐射对植物生长发育的影响及其应用价值 [J]. 土壤与作物, 2020, 9(02): 191−202.
    Boerner R E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility [J]. The Journal of Applied Ecology, 1984, 21(3): 1029. DOI: 10.2307/2405065
    单良. 蒙古栎叶片主要营养物质变异规律分析[D]. 吉林: 北华大学, 2018.
    张志录, 刘中华, 陈明辉. 伏牛山区红豆杉不同叶龄叶片性状对海拔梯度的响应 [J]. 福州大学学报(自然科学版), 2019, 47(2): 265−271, 278.
    刘千里, 徐雪梅, 刘兴良, 等. 卧龙巴郎山川滇高山栎叶片营养元素的海拔梯度变化特征 [J]. 四川林业科技, 2012, 33(3): 1−6. DOI: 10.3969/j.issn.1003-5508.2012.03.001
    卢月娅. 不同海拔梯度下椭圆叶花锚的适应机制研究[D]. 兰州: 兰州大学, 2017.
    张在盛. 不同地区日本落叶松营养元素含量的比较研究[D]. 哈尔滨: 东北林业大学, 2012.
    Iqbal N, Umar S, Per T S, et al. Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard [J]. Plant Signaling & Behavior, 2017, 12(5): e1297000.
    王天娇. 长白山林下湿地植物—凋落物—土壤连续体碳同位素特征研究[D]. 延吉: 延边大学, 2019.
    刘旻霞, 刘洋洋, 陈世伟, 等. 高寒草甸不同坡向条件下植物叶片δ13C及水分利用效率的变化 [J]. 应用生态学报, 2016, 27(12): 3816−3822.

Catalog

    Article views (1504) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return