Peng Bo, Shi Chun, Shi Zhengjun, Yang Jing, Yang Haiyan, Deng Jia. Sulfonation of Bamboo Fiber and Thermoplasticity of Its Modified Products Based on Different Pretreatments[J]. Journal of Southwest Forestry University, 2022, 42(2): 111-119. DOI: 10.11929/j.swfu.202101053
Citation: Peng Bo, Shi Chun, Shi Zhengjun, Yang Jing, Yang Haiyan, Deng Jia. Sulfonation of Bamboo Fiber and Thermoplasticity of Its Modified Products Based on Different Pretreatments[J]. Journal of Southwest Forestry University, 2022, 42(2): 111-119. DOI: 10.11929/j.swfu.202101053

Sulfonation of Bamboo Fiber and Thermoplasticity of Its Modified Products Based on Different Pretreatments

More Information
  • Received Date: January 20, 2021
  • Revised Date: March 17, 2021
  • Available Online: April 25, 2021
  • Published Date: March 19, 2022
  • Alkali pretreatment, hydrothermal pretreatment, and H2O2 pretreatment was developed to pretreat the Dendrocalamus sinicus, which is the largest bamboo species distributed in Southwest China. The objective of the present research was to evaluate the effect of pretreatments on the accessibility and thermoplasticity of bamboo fiber during sulfonation modification. It was demonstrated that 3 pretreatments could obviously improve the accessibility of sulfonation reaction, and a maximum of 0.49 mmol/g was achieved as the bamboo powder was pretreated with H2O2 which had the highest degree of sulfonation modification. In addition, the plasticity of bamboo fiber was improved with the increase of sulfonic group content after sulfonation. The DSC analysis results revealed that the thermoplasticity of bamboo fiber was significantly improved under the synergistic effect of H2O2 pretreatment combined with sulfonation modification, and its glass transition temperature (Tg) was 104.71 ℃.
  • Funakoshi H, Shiraishi N, Norimoto M, et al. Studies on the thermoplasticization of wood [J]. Holzforschung, 1979, 33(5): 159−166. DOI: 10.1515/hfsg.1979.33.5.159
    胡建鹏, 邢东, 郭明辉. 植物纤维增强聚乳酸可生物降解复合材料研究动态 [J]. 西南林业大学学报(自然科学), 2020, 40(3): 180−188.
    周方浪, 邓佳, 杨静, 等. 天然植物纤维化学塑化改性研究进展 [J]. 广州化工, 2018, 46(3): 1−4. DOI: 10.3969/j.issn.1001-9677.2018.03.001
    石纯, 李天诚, 杨静, 等. 竹醋酸纤维素膜的制备及其性能研究 [J]. 林产化学与工业, 2018, 38(5): 70−76. DOI: 10.3969/j.issn.0253-2417.2018.05.010
    Hoang M T, Pham T D, Pham T T, et al. Esterification of sugarcane bagasse by citric acid for Pb2+ adsorption: effect of different chemical pretreatment methods [J]. Environmental Science & Pollution Research, 2021, 28(10): 11869−11881. DOI: 10.1007/s11356-020-07623-9
    Li G L, Shang Y, Wang Y H, et al. Reaction mechanism of etherification of rice straw with epichlorohydrin in alkaline medium [J]. Scientific Reports, 2019, 9(1): 14307. DOI: 10.1038/s41598-019-50860-3
    Lange L E, Obendorf S K. Functionalization of cotton fiber by partial etherification and self-assembly of polyoxometalate encapsulated in Cu3(BTC)2 metal-organic framework [J]. ACS Applied Materials & Interfaces, 2015, 7(7): 3974−3980.
    应文俊, 吴凯, 史正军, 等. 磷酸联合过氧化氢预处理玉米芯及其酶水解效率的影响 [J]. 林产化学与工业, 2018, 38(5): 100−106. DOI: 10.3969/j.issn.0253-2417.2018.05.014
    张福龙. 磺化纤维素的制备及其对重金属离子的吸附作用[D]. 济南: 齐鲁工业大学, 2016.
    Dong C H, Zhang F L, Pang Z Q, et al. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent [J]. Carbohydrate Polymers, 2016, 151: 230−236. DOI: 10.1016/j.carbpol.2016.05.066
    Peng Y Q, Wang Y, Wei X, et al. Sulfonated nanobamboo fiber-reinforced quaternary ammonia poly (ether ether ketone) membranes for alkaline polymer electrolyte fuel cells [J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33581−33588.
    孔金凤, 朱玉长, 靳健. 磺化纤维素纳米纤维多孔膜支撑的高通量纳滤膜的制备及脱盐性能 [J]. 高等学校化学学报, 2020, 41(4): 690−696. DOI: 10.7503/cjcu20190654
    Pan S B, Ragauskas A J. Enhancement of nanofibrillation of softwood cellulosic fibers by oxidation and sulfonation [J]. Carbohydrate Polymers, 2014, 111: 514−523. DOI: 10.1016/j.carbpol.2014.04.096
    Zhang J G, Jiang N, Dang Z, et al. Oxidation and sulfonation of cellulosics [J]. Cellulose, 2007, 15(3): 489−496.
    Liimatainen H, Visanko M, Sirviö J, et al. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment [J]. Cellulose, 2013, 20(2): 741−749. DOI: 10.1007/s10570-013-9865-y
    雷福红, 欧阳吾乐, 杨亚晋, 等. 碱处理对慈竹竹叶膳食纤维提取效果的研究 [J]. 西南林业大学学报(自然科学), 2021, 41(1): 161−166.
    金艳, 杨海艳, 史正军, 等. 碱−羟甲基化预处理对甘蔗渣酶解和发酵效率的影响 [J]. 林产化学与工业, 2020, 40(4): 86−92. DOI: 10.3969/j.issn.0253-2417.2020.04.012
    Fukuhara K, Nakajima K, Kitano M, et al. Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups [J]. ChemSusChem, 2011, 4(6): 778−784. DOI: 10.1002/cssc.201000431
    Parlak E, Arar Ö. Removal of copper (Cu2+) from water by sulfonated cellulose [J]. Journal of Dispersion Science & Technology, 2018, 39(10): 1403−1408. DOI: 10.1080/01932691.2017.1405818
    Sun F F, Liu W, Dong Z X, et al. Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation [J]. Chemical Engineering Journal, 2017, 330: 774−782. DOI: 10.1016/j.cej.2017.07.142
    阮孝慈, 李那, 邓宇. 干法制备木素磺酸盐 [J]. 杭州化工, 2016, 46(4): 14−18.
    宋洁, 齐钟昱, 杨通, 等. 磺化腐植酸有机保水剂的制备及应用 [J]. 现代化工, 2020, 40(5): 128−132.
    刘勇, 刘根起, 梁迪迪, 等. 磺化纤维素水凝胶电刺激响应行为的研究 [J]. 粘接, 2013, 34(11): 44−48. DOI: 10.3969/j.issn.1001-5922.2013.11.020
    侯公伯, 徐俊辉, 沙吾列提·拜开依, 等. 棉杆木质素磺酸钠的制备及其对混凝土的影响 [J]. 现代化工, 2020, 40(6): 98−102.
    赵松铭. 亲水性磺化石墨烯的制备及其在涤纶上的应用[D]. 苏州: 苏州大学, 2019.
    李宁. 几类磺化生物质碳固体酸催化剂的制备、表征及性能研究[D]. 郑州: 郑州大学, 2019.
    Thiangtham S, Runt J, Manuspiya H. Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility [J]. Carbohydrate Polymers, 2019, 208: 314−322. DOI: 10.1016/j.carbpol.2018.12.080
    Wu J, Chandra R, Takada M, et al. Alkaline sulfonation and thermomechanical pulping pretreatment of softwood chips and pellets to enhance enzymatic hydrolysis [J]. Bioresource Technology, 2020, 315: 123789. DOI: 10.1016/j.biortech.2020.123789
    Li J B, Feng P, Xiu H J, et al. Morphological changes of lignin during separation of wheat straw components by the hydrothermal-ethanol method [J]. Bioresource Technology, 2019, 294: 122157. DOI: 10.1016/j.biortech.2019.122157
    Stelte W, Clemons C, Holm J K, et al. Thermal transitions of the amorphous polymers in wheat straw [J]. Industrial Crops & Products, 2011, 34(1): 1053−1056. DOI: 10.1016/j.indcrop.2011.03.014
    Horvath B, Peralta P, Frazier C, et al. Thermal softening of transgenic aspen [J]. Bioresources, 2011, 6(2): 2125−2134.
    Startsev O V, Makhonkov A, Erofeev V, et al. Impact of moisture content on dynamic mechanical properties and transition temperatures of wood [J]. Wood Material Science & Engineering, 2017, 12(1): 55−62.
    Liu Q, Zhong Z P, Wang S R, et al. Interactions of biomass components during pyrolysis: a TG-FTIR study [J]. Journal of Analytical & Applied Pyrolysis, 2011, 90(2): 213−218. DOI: 10.1016/j.jaap.2010.12.009
    Alekhina M, Erdmann J, Ebert A, et al. Physico-chemical properties of fractionated softwood kraft lignin and its potential use as a bio-based component in blends with polyethylene [J]. Journal of Materials Science, 2015, 50(19): 6395−6406. DOI: 10.1007/s10853-015-9192-9

Catalog

    Article views (1504) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return