Wang Kaiyue, Zhang Zhongfu, Wang Haocai, Zhan Pengfei, Song Weifeng, Lu Mei, Wang Hang. Analysis of Microbial Diversity and Functional Characteristics of Paddy Soil Under Traditional Tillage Methods in Hani Terraced Fields[J]. Journal of Southwest Forestry University, 2022, 42(2): 56-66. DOI: 10.11929/j.swfu.202103061
Citation: Wang Kaiyue, Zhang Zhongfu, Wang Haocai, Zhan Pengfei, Song Weifeng, Lu Mei, Wang Hang. Analysis of Microbial Diversity and Functional Characteristics of Paddy Soil Under Traditional Tillage Methods in Hani Terraced Fields[J]. Journal of Southwest Forestry University, 2022, 42(2): 56-66. DOI: 10.11929/j.swfu.202103061

Analysis of Microbial Diversity and Functional Characteristics of Paddy Soil Under Traditional Tillage Methods in Hani Terraced Fields

More Information
  • Received Date: September 02, 2021
  • Revised Date: October 25, 2021
  • Accepted Date: November 07, 2021
  • Available Online: November 19, 2021
  • Published Date: March 19, 2022
  • This study collected soil samples from Hani terraced fields under the traditional farming methods, and from naturally occurring forest soils, which were avoid of influence by artificial rice-growing cultivation using 16S rRNA high-throughput sequencing technologies. We then compared soil microbial taxonomical and functional similarities and differences between these samples, as to reflect the natural responsive characteristics of the soil microorganisms to anthropogenic disturbance. The results showed that the Alpha diversity of paddy soil microorganisms was significantly higher than that of forest soil, and there were significant differences in microbial community structure between 2 soil types. At the phylum level, the dominant bacteria in paddy soil are Chloroflexi and Bacteroidetes, while the dominant bacteria in forest soil are Actinobacteria and Planctomycetes; microbial differences between soil types are even more obvious at the genus level. As seen, Geobacter was the dominant bacteria in paddy soil, while Anaeromyxobacter was the dominant bacteria in forest soil. The differential analysis revealed that Geobacter could be used as a biomarker indicator of microbial communities in paddy soil, while Bradyrhizobium is the microbial biomarker in forest soil. Canonical correspondence analysis showed that the main environmental factor affecting the microbial communities in paddy soil was flooding depth. Microbial functional analysis found that the main function of microbial communities in paddy soil were related to iron respiration respiration of sulfur compounds and oxidation by aerobic nitrite. In contrast, main functions of forest soil microbial communities were those associated with cellulolysis and aromatic compound degradation. Such functional differences between 2 soil types were remarkably significant, indicating that in conventional tillage conditions, affected by rice flooded-drying alternation, iron respiration and nutrient element cycling in paddy soil microbiota have been greatly enhanced. The traditional tillage method will significantly change soil microbial community structure and functional characteristics, and significantly improve microbial diversity. The study provides an important reference for further revealing the evolution of soil ecological functions under traditional tillage.
  • 刘银银, 李峰, 孙庆业, 等. 湿地生态系统土壤微生物研究进展 [J]. 应用与环境生物学报, 2013, 19(3): 547−552.
    贺思腾, 李昆, 刘方炎, 等. 红河干热河谷人工恢复植被土壤微生物和酶的变化与土壤营养化学计量的关系 [J]. 云南农业大学学报(自然科学), 2020, 35(6): 1073−1080.
    褚海燕, 马玉颖, 杨腾, 等. “十四五”土壤生物学分支学科发展战略 [J]. 土壤学报, 2020, 57(5): 1105−1116. DOI: 10.11766/trxb202006150298
    Pratscher J, Dumont M G, Conrad R. Ammonia oxidation coupled to CO2 fixation by Archaea and bacteria in an agricultural soil [J]. PNAS, 2011, 108(10): 4170−4175. DOI: 10.1073/pnas.1010981108
    展鹏飞, 肖德荣, 闫鹏飞, 等. 藏猪扰动作用下的高寒草甸土壤退化特征及微生物群落结构变化 [J]. 环境科学, 2018, 39(4): 1840−1850.
    林兰稳, 钟继洪, 谭军, 等. 土地利用方式对土壤动物多样性的影响 [J]. 生态环境学报, 2012, 21(10): 1678−1682. DOI: 10.3969/j.issn.1674-5906.2012.10.008
    李鸿毅. 中国典型区域水稻土微生物生态多样性及其与溶解性有机质化学多样性的生态关联[D]. 杭州: 浙江大学, 2018.
    靳振江. 耕作和长期施肥对稻田土壤微生物群落结构及活性的影响[D]. 南京: 南京农业大学, 2013.
    祖智波, 陈冬林, 谭周进, 等. 种植模式对稻田土壤微生物数量及活度的影响 [J]. 世界科技研究与发展, 2007, 29(6): 36−39,98. DOI: 10.3969/j.issn.1006-6055.2007.06.008
    任华丽, 崔保山, 白军红, 等. 哈尼梯田湿地核心区水稻土重金属分布与潜在的生态风险 [J]. 生态学报, 2008, 28(4): 1625−1634. DOI: 10.3321/j.issn:1000-0933.2008.04.033
    胡文英, 董铭. 元阳哈尼梯田及周边土地利用格局的时空变化分析 [J]. 云南地理环境研究, 2008, 20(5): 18−23. DOI: 10.3969/j.issn.1001-7852.2008.05.004
    梁勇, 冯书华, 李博, 等. 元阳梯田核心区稻田土壤养分含量与微生物数量的时空变异特征 [J]. 云南农业大学学报(自然科学), 2019, 34(3): 532−537.
    文波龙, 任国, 张乃明. 云南元阳哈尼梯田土壤养分垂直变异特征研究 [J]. 云南农业大学学报, 2009, 24(1): 78−81,93.
    李荣, 宋维峰. 哈尼梯田生态系统土壤微生物量碳的影响因素 [J]. 生态学报, 2020, 40(17): 6223−6232.
    王妍, 张超, 宋维峰, 等. 元阳梯田空间分布特征研究 [J]. 水土保持研究, 2013, 20(2): 103−107.
    刘敬, 刘澄静, 角媛梅, 等. 基于GIS的元阳梯田空间分布及其自然要素分异研究 [J]. 水土保持研究, 2020, 27(2): 337−343.
    李琳琳. 元阳梯田遗产区乡村旅游扶贫研究[D]. 昆明: 云南财经大学, 2020.
    邓安凤, 杨从党, 罗俊, 等. 云南省水稻生产现状及绿色发展对策[C]//全国第十八届水稻优质高产理论与技术研讨会论文集. 南宁, 2019: 87−92.
    安然, 马风云, 崔浩然, 等. 黄河三角洲刺槐臭椿混交林与纯林土壤细菌群落结构和多样性特征分析 [J]. 生态学报, 2019, 39(21): 7960−7967.
    Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas [J]. International Journal of Climatology, 2005, 25(15): 1965−1978. DOI: 10.1002/joc.1276
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
    毛伟华, 吴三玲, 张旭. 土壤微生物16S rDNA的Ion Torrent PGM高通量检测方法构建与应用 [J]. 浙江农业学报, 2015, 27(12): 2165−2170. DOI: 10.3969/j.issn.1004-1524.2015.12.19
    徐琳, 王铭心, 田忠赛, 等. 坡耕地不同作物及有无树篱对土壤微生物群落结构与多样性的影响研究 [J]. 安全与环境工程, 2017, 24(2): 104−112.
    Nakamura R, Obata T, Nojima R, et al. Functional expression and characterization of tetrachloroethene dehalogenase from Geobacter sp [J]. Chemicals & Chemistry, 2018, 9: 1774.
    侯卫国. 慢生根瘤菌结瘤因子研究[D]. 南京: 南京师范大学, 2007.
    Cai Z J, Wang B R, Xu M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of Southern China [J]. Journal of Soils and Sediments, 2015, 15(2): 260−270. DOI: 10.1007/s11368-014-0989-y
    Arndt R. Beobachtungen an Spirochaete denticola der Spirochaete des Zahnschleimes [J]. Archiv Für Pathologische Anatomie Und Physiologie Und Für Klinische Medicin, 1880, 79(1): 76−86.
    刘聿太, 白文响, 王大耜. 从豆制品废水厌氧发酵液分离的一个螺旋体新种 [J]. 微生物学报, 1988, 28(2): 97−101.
    Onley J R, Ahsan S, Sanford R A, et al. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK [J]. Applied and Environmental Microbiology, 2018, 84(4): e01985−17.
    Nobu M K, Narihiro T, Tamaki H, et al. Draft genome sequence of Syntrophorhabdus aromaticivorans strain UI, a mesophilic aromatic compound-degrading syntroph [J]. Genome Announcements, 2014, 2(1): e01064−13.
    赵宇华, 钱泽澍. 硬脂酸降解菌与产甲烷球菌共培养物的研究 [J]. 微生物学报, 1991, 31(2): 133−138.
    Mielke K C, Bertuani R R, Pires F R, et al. Does Canavalia ensiformis inoculation with Bradyrhizobium sp. enhance phytoremediation of sulfentrazone-contaminated soil? [J]. Chemosphere, 2020, 255: 127033. DOI: 10.1016/j.chemosphere.2020.127033
    Maréchal J, Clement B, Nalin R, et al. A recA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus [J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(2): 781−785. DOI: 10.1099/00207713-50-2-781
    Kulichevskaya I S, Suzina N E, Liesack W, et al. Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria [J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(2): 301−306. DOI: 10.1099/ijs.0.013250-0
    Challacombe J F, Eichorst S A, Hauser L, et al. Biological consequences of ancient gene acquisition and duplication in the large genome of Candidatus Solibacter usitatus Ellin6076 [J]. PLoS One, 2011, 6(9): e24882. DOI: 10.1371/journal.pone.0024882
    Ivanova A A, Kulichevskaya I S, Merkel A Y, et al. High diversity of Planctomycetes in soils of two lichen-dominated sub-arctic ecosystems of northwestern Siberia [J]. Frontiers in Microbiology, 2016, 7: 2065.
    张杰, 胡维, 刘以珍, 等. 鄱阳湖湿地不同土地利用方式下土壤微生物群落功能多样性 [J]. 生态学报, 2015, 35(4): 965−971.
    秦红, 李昌晓, 任庆水. 不同土地利用方式对三峡库区消落带土壤细菌和真菌多样性的影响 [J]. 生态学报, 2017, 37(10): 3494−3504.
    徐万里, 唐光木, 葛春辉, 等. 长期施肥对新疆灰漠土土壤微生物群落结构与功能多样性的影响 [J]. 生态学报, 2015, 35(2): 468−477.
    鲁艳红. 长期施肥条件下红壤性水稻土有机质特征及其与土壤质量的关系[D]. 长沙: 湖南农业大学, 2011.
    袁红朝, 秦红灵, 刘守龙, 等. 长期施肥对红壤性水稻土细菌群落结构和数量的影响 [J]. 中国农业科学, 2011, 44(22): 4610−4617. DOI: 10.3864/j.issn.0578-1752.2011.22.007
    Lovley D R, Walker D J F. Geobacter protein nanowi-res [J]. Frontiers in Microbiology, 2019, 10: 2078. DOI: 10.3389/fmicb.2019.02078
    朱超. 环境因素对水稻土中地杆菌和厌氧粘细菌群落的影响[D]. 杨凌: 西北农林科技大学, 2011.
    刘志林, 丁银平, 角媛梅, 等. 红河哈尼梯田潜在弃耕风险耕地识别及其主要影响因子 [J]. 中国生态农业学报(中英文), 2020, 28(1): 124−135.
    郭莹, 王一明, 巫攀, 等. 长期施用粪肥对水稻土中微生物群落功能多样性的影响 [J]. 应用与环境生物学报, 2019, 25(3): 593−602.
    罗希茜, 郝晓晖, 陈涛, 等. 长期不同施肥对稻田土壤微生物群落功能多样性的影响 [J]. 生态学报, 2009, 29(2): 740−748. DOI: 10.3321/j.issn:1000-0933.2009.02.024
    拓晓骅, 朱辉, 王保莉, 等. 淹水培养过程中水稻土地杆菌科微生物群落结构变化特征 [J]. 农业环境科学学报, 2012, 31(6): 1165−1171.
    肖嫩群, 张杨珠, 谭周进, 等. 稻草还田翻耕对水稻土微生物及酶的影响研究 [J]. 世界科技研究与发展, 2008, 30(2): 192−194. DOI: 10.3969/j.issn.1006-6055.2008.02.022
    秦余, 李茜茜, 郑雨焕, 等. 3种野生牛肝菌的菌塘土壤细菌多样性[J]. 微生物学通报, 2016, 43(10): 2148−2153.

Catalog

    Article views (1010) PDF downloads (33) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return