Wang Jianguo, Sun Lili, Li Xinyue, Yuan Ran, Cao Chuanwang. Cloning of Odorant Binding Protein Gene in Lymantria dispar and Its Response to CO2 Stress[J]. Journal of Southwest Forestry University, 2022, 42(4): 59-66. DOI: 10.11929/j.swfu.202104055
Citation: Wang Jianguo, Sun Lili, Li Xinyue, Yuan Ran, Cao Chuanwang. Cloning of Odorant Binding Protein Gene in Lymantria dispar and Its Response to CO2 Stress[J]. Journal of Southwest Forestry University, 2022, 42(4): 59-66. DOI: 10.11929/j.swfu.202104055

Cloning of Odorant Binding Protein Gene in Lymantria dispar and Its Response to CO2 Stress

More Information
  • Received Date: April 20, 2021
  • Revised Date: May 31, 2021
  • Available Online: January 07, 2022
  • Published Date: July 19, 2022
  • Odorant binding proteins(OBPs) can specifically bind and transport odor molecules, which play an important role in sensing odorants in insect olfactory system. The characteristics of the OBP gene in Lymantria dispar and its response to elevated CO2 concentration were studied in order to provide a theoretical basis for clarifying the olfactory response mechanism of the L. dispar under global climate change. Two OBP genes in L. dispar were cloned and its characteristics were analyzed by bioinformatics. Tissue specific expressions of OBP genes were determined under different CO2 concentrations by qRT-PCR. The results showed that the open reading frame(ORF) length of LdOBP1 and LdOBP2 genes are 450 bp and 417 bp, which are encoding 149 and 138 amino acids, respectively. The molecular mass of the protein is 19.41 kDa and 15.35 kDa, and the theoretical isoelectric points are 11.17 and 6.73 for LdOBP1 and LdOBP2, respectively. The LdOBP1 is alkaline protein and LdOBP2 is acidic protein. Both LdOBP1 and LdOBP2 have no obvious transmembrane region. LdOBP1 has no signal peptide sequence while LdOBP2 has signal peptide sequence from 1–22. Phylogenetic tree analysis showed that LdOBP1 and LdOBP2 in L. dispar are closely related to the OBP(AYD42195.1) and OBP(AYD42180.1) in Carposina sasakii, respectively. The OBPs genes in the L. dispar larvae had the highest expression levels in the head. High concentration of CO2 significantly inhibited the expression of LdOBP1 genes in the L. dispar tissues, while LdOBP2 gene expressions were induced in the head and midgut. The OBP genes in L. dispar have the highest expression levels in adult antennae. The expression of LdOBP1 and LdOBP2 genes were significantly inhibited in the antennae of L. dispar adult under high concentration of CO2 stesses. L. dispar may be respond to CO2 stress by regulating the expression level of OBP genes in various tissues.
  • Michael R R, Gregg M, Philippe C, et al. Global and regional drivers of accelerating CO2 emissions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 1704(24): 10288−1029.
    戈峰, 陈法军. 大气CO2浓度增加对昆虫的影响 [J]. 生态学报, 2006, 26(3): 935−944.
    吴刚, 陈法军, 戈峰. CO2浓度升高对棉铃虫生长发育和繁殖的直接影响 [J]. 生态学报, 2006, 26(6): 1732−1738. DOI: 10.3321/j.issn:1000-0933.2006.06.013
    赵文杰, 和淑琪, 鲁智慧, 等. CO2浓度升高对草地贪夜蛾生长发育的直接影响 [J]. 环境昆虫学报, 2019, 41(4): 736−741.
    Dai Y, Wang M F, Jiang S L, et al. Host-selection behavior and physiological mechanisms of the cotton aphid, Aphis gossypii, in response to rising atmospheric carbon dioxide levels [J]. Journal of Insect Physiology, 2018: S1077717809.
    Pelosi P, Maida R. Physiological functions of odorant-binding proteins [J]. Biofizika, 1995, 40(1): 137−145.
    Vogt R G, Riddiford L M. Pheromone binding and inactivation by moth antennae [J]. Nature, 1981, 293(5828): 161−163. DOI: 10.1038/293161a0
    Fujikawa K, Seno K, Ozaki M. A novel takeout-like protein expressed in the taste and olfactory organs of the blowfly, Phormia regina [J]. FEBS Journal, 2010, 273(18): 4311−4321.
    曹馨月, 黄嫒媛, 赵骁, 等. 苹果蠹蛾性信息素结合蛋白Ⅱ(CpomPBP2)基因的克隆及原核表达 [J]. 西北农林科技大学学报(自然科学版), 2015, 43(3): 132−140.
    陈玲, 李红亮, 周宇翔. 桔小实蝇气味结合蛋白BdorOBP2的cDNA克隆、组织表达及配基结合特性 [J]. 昆虫学报, 2013, 56(6): 612−621.
    Harada E, Haba D, Aigaki T, et al. Behavioral analyses of mutants for two odorant-binding protein genes, OBP57d and OBP57e, in Drosophila melanogaster [J]. Genes & Genetic Systems, 2008, 83(3): 257−64.
    Liu Y, Gu S, Zhang Y, et al. Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome [J]. PLoS One, 2012, 7(10): 1−16.
    Lazarevic J, Mataruga V P, Ivanovic J, et al. Host plant effects on the genetic variation and correlations in the individual performance of the gypsy moth [J]. Functional Ecology, 1998, 12(1): 141−148. DOI: 10.1046/j.1365-2435.1998.00166.x
    Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (Rest) for group-wise comparison and statistical analysis of relative expression results in real-time PCR [J]. Nucleic Acids Research, 2002, 30(9): e36. DOI: 10.1093/nar/30.9.e36
    王振越. 杨树主要次生物质对舞毒蛾生长发育及主要解毒酶影响 [D]. 哈尔滨: 东北林业大学, 2020.
    张丽茹. 舞毒蛾的生物学特性及综合防治技术 [J]. 现代农业科技, 2020(6): 116−117. DOI: 10.3969/j.issn.1007-5739.2020.06.072
    张玉, 杨斌, 王桂荣. 昆虫嗅觉相关可溶性蛋白的研究进展 [J]. 环境昆虫学报, 2019, 41(2): 229−240.
    Foret S, Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera) [J]. Genome Research, 2006, 16(11): 1404−1413. DOI: 10.1101/gr.5075706
    He X, He Z B, Zhang Y J, et al. Genome-wide identification and characterization of odorant-binding protein (OBP) genes in the malaria vector Anopheles sinensis (Diptera: Culicidae) [J]. Insect Science, 2016, 23(3): 366−376. DOI: 10.1111/1744-7917.12333
    吴仲南, 杜永均, 诸葛启钏. 斜纹夜蛾普通气味结合蛋白GOBP1基因的表达定位分析 [J]. 昆虫学报, 2009, 52(6): 610−616. DOI: 10.3321/j.issn:0454-6296.2009.06.003
    杨叶青, 王山宁, 彭勇, 等. 气味结合蛋白MmedOBP19在中红侧沟茧蜂足部的表达及配体结合特征 [J]. 昆虫学报, 2017, 60(6): 613−620.
    Liu H, Zhao X F, Fu L, et al. BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel) [J]. Scientific Reports, 2017, 7(1): 15894. DOI: 10.1038/s41598-017-15893-6
    Biessmann H, Andronopoulou E, Biessmann M R, et al. The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes [J]. PLoS One, 2010, 5(3): e9471. DOI: 10.1371/journal.pone.0009471
    Kaissling K E. Olfactory perireceptor and receptor events in moths: a kinetic model revised [J]. Journal of Comparative Physiology A, 2009, 195(10): 895−922. DOI: 10.1007/s00359-009-0461-4
    陈晓燕, 刘佳妮, 郝若诗, 等. 大气CO2浓度升高对粘虫生长发育和繁殖的影响 [J]. 环境昆虫学报, 2017, 39(1): 144−151.
    王晓伟, 姬兰柱, 刘艳. 小青杨组织营养品质和舞毒蛾幼虫生长对大气CO2浓度升高的响应 [J]. 生态学报, 2006, 26(10): 3166−3174. DOI: 10.3321/j.issn:1000-0933.2006.10.002
    闫丽琼, 汤方, 龚尚骞, 等. 舞毒蛾保幼激素结合蛋白家族基因克隆及对CO2胁迫的响应 [J]. 环境昆虫学报, 2019, 41(6): 1339−1347.
    Majeed S, Sharon R H, Ignell R. Impact of elevated CO2 background levels on the host-seeking behaviour of Aedes aegypti [J]. Journal of Experimental Biology, 2014, 217(4): 598−604.
    张雨, 丰凯, 汤方. 杨小舟蛾MtroOBP1基因的克隆、序列分析及表达 [J]. 南京林业大学学报(自然科学版), 2020, 44(5): 215−221.
    吉挺, 沈芳, 梁勤, 等. 中华蜜蜂OBP3基因的克隆、原核表达及组织表达谱 [J]. 昆虫学报, 2014, 57(8): 897−904.
  • Related Articles

    [1]Li Feifei, Piao Chunlan, Cui Minlong. Cloning and Expression Analysis of R2R3−MYB Genes Involved in Natural Rubber Synthesis in Periploca sepium[J]. Journal of Southwest Forestry University, 2023, 43(5): 57-65. DOI: 10.11929/j.swfu.202205041
    [2]Lu Qin, Wang Chao, Shao Shuxia, Liu Juan, Chen Hang. The Histological Structure, Chemical Constituents and Gene Expression of Glandular Trichomes of Rhus potaninii[J]. Journal of Southwest Forestry University, 2023, 43(2): 54-61. DOI: 10.11929/j.swfu.202110053
    [3]Wang Meng, Song Shilin, Wang Xu, Tian Yue, Zhang Zhengmin, Hu Shiran, Cheng Xinyue. Double Stranded RNA Expression of Bx−apa−2 and Bx−apm−2 Genes in Fusarium oxysporum Mediated RNAi for Bursaphelenchus xylophilus[J]. Journal of Southwest Forestry University, 2022, 42(3): 72-79. DOI: 10.11929/j.swfu.202102043
    [4]Yang Huiqin, Yu Wandu, Zhang Liying, Gao Dongli, Shang Yi, Ma Ling. Effects of Foliar Spraying Salicylic Acid on the Content of Chlorogenic Acid and Expression of Key Enzyme Gene in Solanum tuberosum Leaves[J]. Journal of Southwest Forestry University, 2021, 41(5): 184-188. DOI: 10.11929/j.swfu.202005057
    [5]Qisheng Li, Aiwei Guo, Wentao Luo, Peifu Wu, Jielong Zhou. Effects of Excessive Folic Acid on Embryonic Development and Vangl1 Gene Expression in Mice[J]. Journal of Southwest Forestry University, 2020, 40(5): 87-92. DOI: 10.11929/j.swfu.201906027
    [6]Zhiwen Xu, Xuemin Ren, Man Zhao, Naiyong Liu, Guoxing Wu, Bin Yang, Jiaying Zhu. Cloning and Expression Analysis of Storage Protein hexamerin genes in Tenebrio molitor[J]. Journal of Southwest Forestry University, 2019, 39(4): 96-102. DOI: 10.11929/j.swfu.201903110
    [7]Haitao Chen, Yalin Shao, Zhanping Zhao, Ping Zhao, Xiaozhu Liu, Yong Ding. Gene Cloning and Expression Analysis of VdARP7 in Vaccinium dunalianum[J]. Journal of Southwest Forestry University, 2018, 38(4): 179-186. DOI: 10.11929/j.issn.2095-1914.2018.04.028
    [8]WANG Zijia, JIANG Jing, LIU Guifeng, LIU Feifei, LI Huiyu. Cloning and Expression Analysis of Flowering Regulation Related Genes FLC、 LFY and SOC1 of Betula platyphylla[J]. Journal of Southwest Forestry University, 2014, 34(4): 20-25. DOI: 10.3969/j.issn.2095-1914.2014.04.004
    [9]WU Peifu1, TONG Yougui2, WANG Lin3, PAN Yongzhi4, XIONG Zhongping4, DOU Baokun4. Cloning and Sequence Analysis on COX1 and 12S rRNA Genes of Two Seed Beetle Species[J]. Journal of Southwest Forestry University, 2014, 34(2): 44-48. DOI: 10.3969/j.issn.2095-1914.2014.02.009
    [10]ZHANG Han-yao, LIU Xiao-zhen. Construction of Expression Vector of Wood-Boring Pest Resistant Gene Transferred into Populus yunnanensis[J]. Journal of Southwest Forestry University, 2004, 24(1): 12-14. DOI: 10.11929/j.issn.2095-1914.2004.01.003

Catalog

    Article views (672) PDF downloads (18) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return