Han Xinsheng, Xu Hao, An Yu, Guo Yongzhong, Dong Liguo, Wang Yueling, Wan Haixia, Cai Jinjun. Responses of Trunk Sap Flow of Armeniaca sibirica to Varied Environmental Factors in Different Weather Conditions[J]. Journal of Southwest Forestry University, 2023, 43(6): 54-64. DOI: 10.11929/j.swfu.202205036
Citation: Han Xinsheng, Xu Hao, An Yu, Guo Yongzhong, Dong Liguo, Wang Yueling, Wan Haixia, Cai Jinjun. Responses of Trunk Sap Flow of Armeniaca sibirica to Varied Environmental Factors in Different Weather Conditions[J]. Journal of Southwest Forestry University, 2023, 43(6): 54-64. DOI: 10.11929/j.swfu.202205036

Responses of Trunk Sap Flow of Armeniaca sibirica to Varied Environmental Factors in Different Weather Conditions

More Information
  • Received Date: May 11, 2022
  • Revised Date: August 16, 2022
  • Accepted Date: September 21, 2022
  • Available Online: October 13, 2022
  • Published Date: November 24, 2023
  • The sap flow rate of Armeniaca sibirica, environmental factors including meteorological factors, soil moisture, and soil temperature were monitored simultaneously in the growing season of 2019 in a loess hilly area of Ningxia. The relationships between the sap flow rate and environmental factors were analyzed under different weather conditions, and the contributions of each main environmental factor to the sap flow variation were quantified separately. The results showed that in sunny days, solar radiation was the greatest conctributor to the sap flow variation(80.8%), then were the saturation vapor pressure deficit(2.7%) and wind speed(1.4%). In cloudy days, solar radiation, air temperature and soil temperature contributed 44.9%, 9.3% and 13.7% to the sap flow varation respectively. In rainy days, the contribution of solar radiation was 60.4%, and the saturation vapor pressure deficit was 4.7%. From sunny, cloudy, to rainy days, the total contribution of environmental factors to the sap flow variatoin decreased in turn, the correlation between sap flow rate and air relative humidity and saturation vapor pressure deficit gradually increased, and the correlation between sap flow rate and air temperature, soil moisture and soil temperature gradually decreased. Under the 3 weather conditions, solar radiation was the main meteorological factor controlling the sap flow variation, then were the saturation vapor pressure deficit, air temperature, soil temperature, and wind speed. The results provide a theoretical basis for a detailed characterization of vegetation transpiration response to environmental factors and a better understanding of relevant driving mechanisms.
  • Komatsu H, Kang Y, Kume T, et al. Transpiration from a Cryptomeria japonica plantation, part 2: responses of canopy conductance to meteorological factors [J]. Hydrological Processes, 2006, 20(6): 1321−1334. DOI: 10.1002/hyp.6094
    Kumagai T, Aoki S, Shimizu T, et al. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed [J]. Tree Physiology, 2007, 27(2): 161−168. DOI: 10.1093/treephys/27.2.161
    Wang Y H, Yu P T, Feger K H, et al. Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China [J]. Ecohydrology, 2011, 4(2): 277−287. DOI: 10.1002/eco.215
    Zuo D P, Xu Z X, Yao W Y, et al. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China [J]. The Science of the Total Environment, 2016, 544: 238−250. DOI: 10.1016/j.scitotenv.2015.11.060
    Steppe K, Vandegehuchte M W, Tognetti R, et al. Sap flow as a key trait in the understanding of plant hydraulic functioning [J]. Tree Physiology, 2015, 35(4): 341−345. DOI: 10.1093/treephys/tpv033
    王艳兵, 王彦辉, 熊伟, 等. 六盘山半干旱区华北落叶松树干液流速率及主要影响因子的坡位差异 [J]. 林业科学, 2017, 53(6): 10−20. DOI: 10.11707/j.1001-7488.20170602
    于占辉, 陈云明, 杜盛. 黄土高原半干旱区侧柏(Platycladus orientalis)树干液流动态 [J]. 生态学报, 2009, 29(7): 3970−3976. DOI: 10.3321/j.issn:1000-0933.2009.07.061
    孔喆, 陈胜楠, 律江, 等. 欧美杨单株液流昼夜组成及其影响因素分析 [J]. 林业科学, 2020, 56(3): 8−20. DOI: 10.11707/j.1001-7488.20200302
    Hong L, Guo J B, Liu Z B, et al. Time-lag effect between sap flow and environmental factors of Larix principis-rupprechtii Mayr [J]. Forests, 2019, 10(11): 971. DOI: 10.3390/f10110971
    武鹏飞, 刘云强, 李冬梅, 等. 环境因子对沙地人工杨树林树干液流的驱动影响 [J]. 中国农业气象, 2021, 42(5): 402−411. DOI: 10.3969/j.issn.1000-6362.2021.05.005
    李少宁, 鲁绍伟, 赵云阁, 等. 北京典型天气下的4种阔叶树种液流特征及其影响因素 [J]. 生态与农村环境学报, 2019, 35(2): 189−196. DOI: 10.19741/j.issn.1673-4831.2017.0869
    秦颢萍, 刘泽彬, 郭建斌, 等. 环境和冠层结构对华北落叶松林树干液流的影响 [J]. 应用生态学报, 2021, 32(5): 1681−1689. DOI: 10.13287/j.1001-9332.202105.007
    Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements [J]. Tree Physiology, 1987, 3(4): 309−320. DOI: 10.1093/treephys/3.4.309
    Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56[M]. Rome, Italy: Food and Agriculture Organization of the United Nations, 1998: 1−15.
    孙旭, 杨文慧, 焦磊, 等. 不同时间尺度北京蟒山油松树干液流对环境因子的响应 [J]. 生态学报, 2022, 42(10): 4113−4123.
    麦合木提·图如普, 周伟权, 丁想, 等. 吐鲁番盆地杏树树干液流变化特征及其对环境因子的响应 [J]. 生态学杂志, 2021, 40(8): 2378−2387. DOI: 10.13292/j.1000-4890.202108.014
    费俊娥, 焦陇慧, 吴贤忠, 等. 陇东黄土高原区人工刺槐树干液流特征 [J]. 甘肃农业大学学报, 2020, 55(6): 131−139. DOI: 10.13432/j.cnki.jgsau.2020.06.017
    刘延惠, 丁访军, 舒德远, 等. 茂兰喀斯特原生林细叶青冈树干液流环境响应特征 [J]. 南京林业大学学报(自然科学版), 2017, 41(3): 77−85.
    Liu X S, Biondi F. Transpiration drivers of high-elevation five-needle pines (Pinus longaeva and Pinus flexilis) in sky-island ecosystems of the North American Great Basin [J]. The Science of the Total Environment, 2020, 739: 139861. DOI: 10.1016/j.scitotenv.2020.139861
    Kumagai T, Tateishi M, Shimizu T, et al. Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed [J]. Agricultural and Forest Meteorology, 2008, 148(10): 1444−1455. DOI: 10.1016/j.agrformet.2008.04.010
    李浩, 胡顺军, 朱海, 等. 基于热扩散技术的梭梭树干液流特征研究 [J]. 生态学报, 2017, 37(21): 7187−7196.
    赵春彦, 司建华, 冯起, 等. 树干液流研究进展与展望 [J]. 西北林学院学报, 2015, 30(5): 98−105. DOI: 10.3969/j.issn.1001-7461.2015.05.16
    Jiao L, Lu N, Sun G, et al. Biophysical controls on canopy transpiration in a black locust (Robinia pseudoacacia) plantation on the semi-arid Loess Plateau, China [J]. Ecohydrology, 2016, 9(6): 1068−1081. DOI: 10.1002/eco.1711
    党宏忠, 却晓娥, 冯金超, 等. 晋西黄土区苹果树边材液流速率对环境驱动的响应 [J]. 应用生态学报, 2019, 30(3): 823−831. DOI: 10.13287/j.1001-9332.201903.015
    Song L N, Zhu J J, Li M C, et al. Canopy transpiration of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China [J]. Agricultural and Forest Meteorology, 2018, 250/251: 192−201. DOI: 10.1016/j.agrformet.2017.12.260
    Zheng C L, Wang Q. Water-use response to climate factors at whole tree and branch scale for a dominant desert species in central Asia: Haloxylon ammodendron [J]. Ecohydrology, 2014, 7(1): 56−63. DOI: 10.1002/eco.1321
    王媛, 魏江生, 刘兵兵, 等. 环境因子对大兴安岭南段白桦树干液流变化特征的影响 [J]. 东北林业大学学报, 2021, 49(2): 11−17. DOI: 10.13759/j.cnki.dlxb.2021.02.003
    O'Grady A P, Worledge D, Battaglia M. Constraints on transpiration of Eucalyptus globulus in southern Tasmania, Australia [J]. Agricultural and Forest Meteorology, 2008, 148(3): 453−465. DOI: 10.1016/j.agrformet.2007.10.006
    贾国栋, 陈立欣, 李瀚之, 等. 北方土石山区典型树种耗水特征及环境影响因子 [J]. 生态学报, 2018, 38(10): 3441−3452.
    Zeppel M J B, Murray B R, Barton C, et al. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia [J]. Functional Plant Biology: FPB, 2004, 31(5): 461−470. DOI: 10.1071/FP03220
    崔鸿侠, 唐万鹏, 潘磊, 等. 神农架华山松树干液流特征及其影响因素 [J]. 中南林业科技大学学报, 2018, 38(9): 89−93, 130. DOI: 10.14067/j.cnki.1673-923x.2018.09.014
    Ford C R, Goranson C E, Mitchell R J, et al. Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees [J]. Tree Physiology, 2004, 24(9): 951−960. DOI: 10.1093/treephys/24.9.951
    王玥, 鄢春华, 邱国玉. 土壤温度对油松树干液流启动与停止的影响 [J]. 北京大学学报(自然科学版), 2019, 55(3): 580−586. DOI: 10.13209/j.0479-8023.2019.028
    黄雅茹, 马迎宾, 辛智鸣, 等. 柽柳不同季节树干液流特征及其与土壤含水量及土壤温度的关系 [J]. 西北林学院学报, 2021, 36(5): 1−10. DOI: 10.3969/j.issn.1001-7461.2021.05.01
    张晓艳, 褚建民, 孟平, 等. 民勤绿洲荒漠过渡带梭梭(Haloxylon ammodendron(C. A. Mey) bunge)树干液流特征及其对环境因子的响应 [J]. 生态学报, 2017, 37(5): 1525−1536.
    曹文强, 韩海荣, 马钦彦, 等. 山西太岳山辽东栎夏季树干液流通量研究 [J]. 林业科学, 2004, 40(2): 174−177. DOI: 10.3321/j.issn:1001-7488.2004.02.031
    Brinkmann N, Eugster W, Zweifel R, et al. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying [J]. Tree Physiology, 2016, 36(12): 1508−1519. DOI: 10.1093/treephys/tpw062
    李自豪, 卢志朋, 马澜桐, 等. 辽西北半干旱区沙地樟子松树干液流变化特征及影响因素 [J]. 沈阳农业大学学报, 2020, 51(3): 271−278.
    姚依强, 陈珂, 王彦辉, 等. 华北落叶松树干液流速率主要影响因子及关系的时间尺度变化 [J]. 旱区资源与环境, 2017, 31(2): 155−161.
  • Cited by

    Periodical cited type(4)

    1. 张星宇,杨金艳,阮宏华,张瑞婷. 模拟干旱下杨树树干液流特征及其对环境因子的响应. 水土保持研究. 2024(02): 84-91 .
    2. 林雪雯,郭建斌,韩炎穆,付高冉,于澎涛. 不同天气下华北落叶松树干液流对环境的响应. 应用生态学报. 2024(08): 2063-2072 .
    3. 高连炜,马子澳,刘春和,赵莉丽,王奥,查同刚. 北京低山区典型人工林树干液流对土壤水分胁迫的响应. 中国水土保持科学(中英文). 2024(04): 129-136 .
    4. 韩新生,王晓,王彦辉,李振华. 2种水分条件下华北落叶松林的林下日蒸散量变化差异. 浙江农林大学学报. 2024(05): 949-958 .

    Other cited types(3)

Catalog

    Article views (602) PDF downloads (12) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return