Citation: | Rong Yuhong, Sun Shixian, Zhang Faming, Li Liang, Li Rongbiao, Luo Chao, Zheng Yi. Studies on the Dynamic Process to Remove Single and Joint Sulfadiazine Pollution by Vetiveria zizanioides from Aqueous Media[J]. Journal of Southwest Forestry University, 2023, 43(6): 79-90. DOI: 10.11929/j.swfu.202206015 |
Jin C X, Wei S, Sun R L, et al. The forms, distribution, and risk assessment of sulfonamide antibiotics in the manure-soil-vegetable system of feedlot livestock [J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(5): 790−797. DOI: 10.1007/s00128-020-03010-9
|
Wang Y Q, Lei Y, Liu X, et al. Sulfonamide and tetracycline in landfill leachates from seven municipal solid waste (MSW) landfills: seasonal variation and risk assessment[J]. The Science of the Total Environment, 2022, 825: 153936.
|
许祥. 城市饮用水源中磺胺类抗生素污染特征分析和风险评价[D]. 杭州: 浙江工业大学, 2019.
|
Wang Y H, Chen C B, Tassaneeyakul W, et al. The medication risk of Stevens–Johnson syndrome and toxic epidermal necrolysis in asians: the major drug causality and comparison with the US FDA label [J]. Clinical Pharmacology and Therapeutics, 2019, 105(1): 112−120. DOI: 10.1002/cpt.1071
|
Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China [J]. Chemosphere, 2011, 82(6): 822−828. DOI: 10.1016/j.chemosphere.2010.11.028
|
Chen Y S, Zhang H B, Luo Y M, et al. Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in East China [J]. Environmental Monitoring and Assessment, 2012, 184(4): 2205−2217. DOI: 10.1007/s10661-011-2110-y
|
中华人民共和国农业农村部. 饲料药物添加剂使用规范(第168号) [Z]. 2011−09−04.
|
隋倩雯, 张俊亚, 魏源送, 等. 畜禽养殖废水生物处理与农田利用过程抗生素抗性基因的转归特征研究进展 [J]. 环境科学学报, 2016, 36(1): 16−26.
|
周品成, 刘希强, 康兴生, 等. 4种水生植物对兽用抗生素去除效果比较 [J]. 华南农业大学学报, 2019, 40(6): 1−7.
|
Farkas M H, Berry J O, Aga D S. Chlortetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure [J]. Environmental Science & Technology, 2007, 41(4): 1450−1456.
|
Morillo E, Villaverde J. Advanced technologies for the remediation of pesticide-contaminated soils [J]. The Science of the Total Environment, 2017, 586: 576−597. DOI: 10.1016/j.scitotenv.2017.02.020
|
Kahl S, Nivala J, Van Afferden M, et al. Effect of design and operational conditions on the performance of subsurface flow treatment wetlands: Emerging organic contaminants as indicators [J]. Water Research, 2017, 125: 490−500. DOI: 10.1016/j.watres.2017.09.004
|
Huang A, Yan M, Lin J, et al. A review of processes for removing antibiotics from breeding wastewater [J]. International Journal of Environmental Research and Public Health, 2021, 18(9): 4909. DOI: 10.3390/ijerph18094909
|
Jain M, Majumder A, Ghosal P S, et al. A review on treatment of petroleum refinery and petrochemical plant wastewater: a special emphasis on constructed wetlands [J]. Journal of Environmental Management, 2020, 272: 111057. DOI: 10.1016/j.jenvman.2020.111057
|
Zhu L M, Xu H T, Xiao W S, et al. Ecotoxicological effects of sulfonamide on and its removal by the submerged plant Vallisneria natans (Lour. ) Hara [J]. Water Research, 2020, 170: 115354. DOI: 10.1016/j.watres.2019.115354
|
Liao X B, Li B X, Zou R S, et al. Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure [J]. Environmental Science and Pollution Research International, 2016, 23(8): 7911−7918. DOI: 10.1007/s11356-016-6054-1
|
Tai Y P, Fung-Yee Tam N, Ruan W F, et al. Specific metabolism related to sulfonamide tolerance and uptake in wetland plants [J]. Chemosphere, 2019, 227: 496−504. DOI: 10.1016/j.chemosphere.2019.04.069
|
Yan Q, Feng G Z, Gao X, et al. Removal of pharmaceutically active compounds (PhACs) and toxicological response of Cyperus alternifolius exposed to PhACs in microcosm constructed wetlands [J]. Journal of Hazardous Materials, 2016, 301: 566−575. DOI: 10.1016/j.jhazmat.2015.08.057
|
Migliore L, Civitareale C, Cozzolino S, et al. Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants [J]. Chemosphere, 1998, 37: 2957−2961. DOI: 10.1016/S0045-6535(98)00336-1
|
Forni C, Cascone A, Fiori M, et al. Sulphadimethoxine and Azolla filiculoides Lam. : a model for drug remediation [J]. Water research, 2002, 36(13): 3398−3403. DOI: 10.1016/S0043-1354(02)00015-5
|
Liu L, Liu Y, Liu C, et al. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions [J]. Ecological Engineering, 2013, 53: 138−143. DOI: 10.1016/j.ecoleng.2012.12.033
|
Pandey V C, Praveen A. Vetiveria zizanioides (L. ) Nash–more than a promising crop in phytoremediation [J]. Phytoremediation Potential of Perennial Grasses, 2020: 31−62.
|
Datta R, Quispe M A, Sarkar D. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils [J]. Bulletin of Environmental Contamination and Toxicology, 2011, 86(1): 124−128. DOI: 10.1007/s00128-010-0185-8
|
Makris K C, Shakya K M, Datta R, et al. High uptake of 2, 4, 6-trinitrotoluene by vetiver grass: potential for phytoremediation? [J]. Environmental Pollution, 2007, 146(1): 1−4.
|
张坤, 孙仕仙, 石傲傲, 等. 扑草净胁迫下香根草叶片的代谢组学研究 [J]. 西南林业大学学报(自然科学), 2022, 42(3): 90−99.
|
Marcacci S, Raveton M, Ravanel P, et al. Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics [J]. Environmental and Experimental Botany, 2006, 56(2): 205−215. DOI: 10.1016/j.envexpbot.2005.02.004
|
Datta R, Das P, Smith S, et al. Phytoremediation potential of vetiver grass[Chrysopogon zizanioides (l. )] for tetracycline [J]. International Journal of Phytoremediation, 2013, 15(4): 343−351. DOI: 10.1080/15226514.2012.702803
|
Panja S, Sarkar D, Li K, et al. Uptake and transformation of ciprofloxacin by vetiver grass (Chrysopogon zizanioides) [J]. International Biodeterioration and Biodegradation, 2019, 142: 200−210.
|
Panja S, Sarkar D, Datta R. Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent [J]. International Journal of Phytoremediation, 2020, 22(7): 764−773. DOI: 10.1080/15226514.2019.1710813
|
秦丽婷, 童蕾, 刘慧, 等. 环境中磺胺类抗生素的生物降解及其抗性基因污染现状 [J]. 环境化学, 2016, 35(5): 875−883.
|
陈超, 赵丽丽, 任登鸿, 等. 不同营养液对香根草生长的影响 [J]. 贵州农业科学, 2014, 42(5): 86−88. DOI: 10.3969/j.issn.1001-3601.2014.05.022
|
农业农村部, 卫生和计划生育委员会. 食品安全国家标准 动物性食品中13种磺胺类药物多残留的测定 高效液相色谱法: GB 29694—2013[S]. 北京: 中国标准出版社, 2014.
|
Chen J, He L X, Cheng Y X, et al. Trace analysis of 28 antibiotics in plant tissues (root, stem, leaf and seed) by optimized QuEChERS pretreatment with UHPLC-MS/MS detection [J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2020, 1161: 122450. DOI: 10.1016/j.jchromb.2020.122450
|
石傲傲, 郑毅, 张坤, 等. 香根草对扑草净胁迫的响应和去除效果 [J]. 福建农林大学学报(自然科学版), 2021, 50(2): 170−177. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2021.02.004
|
荣渝虹, 张发明, 杨娟, 等. 香根草对磺胺类抗生素污染水体的修复潜力研究 [J]. 生态与农村环境学报, 2022, 38(6): 795−801.
|
李亚宁, 张丽红, 吴鹏, 等. 磺胺类抗生素在土壤中的迁移转化及植物效应 [J]. 安全与环境学报, 2019, 19(4): 1425−1430.
|
Hoang T T T, Tu L T C, Le N P, et al. A preliminary study on the phytoremediation of antibiotic contaminated sediment [J]. International journal of phytoremediation, 2013, 15(1): 65−76. DOI: 10.1080/15226514.2012.670316
|
Ruan W, Wang J, Huang J, et al. The in vivo and vitro degradation of sulfonamides in wetland plants reducing phytotoxicity and environmental pollution [J]. Environmental Science and Pollution Research, 2022: 1−11.
|
姜娜, 杨姝, 杨京民, 等. 不同多年生黑麦草品种对土壤镉和砷吸收积累差异研究 [J]. 云南农业大学学报(自然科学), 2022, 37(1): 152−161.
|
Yan Y, Pengmao Y, Xu X, et al. Migration of antibiotic ciprofloxacin during phytoremediation of contaminated water and identification of transformation products [J]. Aquatic Toxicology, 2020, 219: 105374. DOI: 10.1016/j.aquatox.2019.105374
|
卢毅欣, 杨琛, 李华峰, 等. 磺胺二甲嘧啶与镉单一和复合污染对生菜生长的影响 [J]. 生态环境学报, 2019, 28(1): 160−169.
|
武淑文, 侯磊, 洪子萌, 等. 阿特拉津胁迫下外源磷对香蒲磷吸收和抗氧化酶系统的影响 [J]. 农业环境科学学报, 2021, 40(4): 844−851.
|
Zhu M, Yang Y, Wang M, et al. A deep insight into the suppression mechanism of Sedum alfredii root exudates on Pseudomonas aeruginosa based on quorum sensing [J]. Ecotoxicology and Environmental Safety, 2021, 217: 112240. DOI: 10.1016/j.ecoenv.2021.112240
|
梅林林, 李霄汉, 连翰伟. 磺胺嘧啶对凤眼莲叶绿素和抗氧化酶的影响及其在植物体内的富集特征 [J]. 黑龙江农业科学, 2021(3): 89−94. DOI: 10.11942/j.issn1002-2767.2021.03.0089
|
Cadot S, Guan H, Bigalke M, et al. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field [J]. Microbiome, 2021, 9(1): 103. DOI: 10.1186/s40168-021-01049-2
|
Aristilde L, Melis A, Sposito G. Inhibition of photosynthesis by a fluoroquinolone antibiotic [J]. Environmental science & technology, 2010, 44(4): 1444−1450.
|
Sun S X, Li Y M, Zheng Y, et al. Uptake of 2, 4-bis (Isopropylamino)-6-methylthio-s-triazine by vetiver grass (Chrysopogon zizanioides L. ) from hydroponic media [J]. Bulletin of environmental contamination and toxicology, 2016, 96(4): 550−555. DOI: 10.1007/s00128-016-1737-3
|
贾继维, 张坤, 李鑫圆, 等. 腐植酸对香根草吸收和去除扑草净的影响 [J]. 西南林业大学学报(自然科学), 2019, 39(2): 121−126.
|
Babić S, Periša M, Škorić I. Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media [J]. Chemosphere, 2013, 91(11): 1635−1642. DOI: 10.1016/j.chemosphere.2012.12.072
|
Collins C, Fryer M, Grosso A. Plant uptake of non-ionic organic chemicals [J]. Environmental science & technology, 2006, 40(1): 45−52.
|
Lillenberg M, Litvin S, Nei L, et al. Enrofloxacin and ciprofloxacin uptake by plants from soil [J]. Agronomy Research, 2010, 8: 807−814.
|
He Y, Langenhoff A A M, Sutton N B, et al. Metabolism of ibuprofen by Phragmites australis: uptake and phytodegradation [J]. Environmental Science and Technology, 2017, 51(8): 4576−4584.
|
Chehrenegar B, Hu J, Ong S L. Active removal of ibuprofen by Money plant enhanced by ferrous ions [J]. Chemosphere, 2016, 144: 91−96. DOI: 10.1016/j.chemosphere.2015.08.060
|
杨浚恒, 崔海军, 石珣珣, 等. 贵州娘娘山湿地两种藓类沼泽植物群落组成及其与环境因子的关系 [J]. 西部林业科学, 2022, 51(5): 59−67.
|