Citation: | Li Ye, Tang Li, Xiao Jingxiu, Luo Wei, Zheng Yi. Effects of Nitrate and Ammonium Nitrogen on AM Colonization and Nitrogen and Phosphorus Uptake in Triticum aestivum and Vicia faba Intercropping System[J]. Journal of Southwest Forestry University, 2024, 44(1): 214-220. DOI: 10.11929/j.swfu.202209059 |
吴鑫雨, 李海叶, 刘振洋, 等. 间作不同行小麦氮素累积分配特征及其对氮肥施用的响应 [J]. 西南林业大学学报(自然科学), 2022, 42(5): 47−55.
|
马道承, 庞艳萍, 等. 植物不同氮素形态配比施肥及其分子机制研究进展 [J]. 西部林业科学, 2022, 51(5): 164−170.
|
崔纪菡, 赵静, 孟建, 等. 铵态氮和硝态氮对谷子形态和生物量的影响研究 [J]. 中国农业科技导报, 2017, 19(10): 66−72.
|
张平, 周毅, 高祥, 等. 氮形态对低磷胁迫下苗期玉米生物学性状及磷素吸收的影响 [J]. 南京农业大学学报, 2012, 35(4): 32−36.
|
李宝珍, 王松伟, 冯慧敏, 等. 氮素供应形态对水稻根系形态和磷吸收的影响 [J]. 中国水稻科学, 2008, 22(6): 665−668.
|
赵桂茹, 程易, 杨友琼, 等. 玉米‖马铃薯接种AMF对坡耕地水土及氮素流失的影响 [J]. 云南农业大学学报(自然科学), 2022, 37(3): 523−529.
|
Qiu Q Y, Bender S F, Mgelwa A S, et al. Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: a meta-analysis[J]. The Science of the Total Environment, 2022, 807(1): 150857.
|
王浩, 方燕, 刘润进, 等. 丛枝菌根中养分转运、代谢、利用与调控研究的最新进展 [J]. 植物生理学报, 2018, 54(11): 1645−1658.
|
赵乾旭, 史静, 张仕颖, 等. 土著从枝菌根真菌(AMF)与不同形态氮对紫色土间作大豆生长及氮利用的影响 [J]. 菌物学报, 2017, 36(7): 983−995.
|
汪翠翠, 王志鹏, 李梦瑶, 等. 不同外源氮对丛枝菌根真菌Rhizophagus irregularis侵染棉花植株和氮磷转运的影响 [J]. 工业微生物, 2018, 48(4): 12−16.
|
Govindarajulu M, Pfeffer P E, Jin H R, et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis [J]. Nature, 2005, 435(7043): 819−823. DOI: 10.1038/nature03610
|
汪鹞雄, 李全, 沈益康, 等. 模拟氮沉降对杉木丛枝菌根真菌侵染率和球囊霉素的影响 [J]. 生态学报, 2021, 41(1): 194−201.
|
Trejo D, Barois I, Sangabriel-Conde W. Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi [J]. Agroforestry Systems, 2016, 90(2): 265−279. DOI: 10.1007/s10457-015-9852-4
|
刘圆圆, 赵乾旭, 邓曦, 等. 土著AMF与氮形态对辣椒| | 菜豆间作系统植株氮利用及其影响因素研究 [J]. 中国生态农业学报, 2020, 28(2): 245−254.
|
Ardakani M R, Rejali F, Daei G, et al. 32P isotope to determine the efficiency of mycorrhizal wheat symbiosis subjected to saline water [J]. Communications in Soil Science and Plant Analysis, 2013, 44(22): 3317−3326. DOI: 10.1080/00103624.2013.848284
|
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
|
Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots [J]. New Phytologist, 1980, 84(3): 489−500. DOI: 10.1111/j.1469-8137.1980.tb04556.x
|
Jakobsen I, Abbott L K, Robson A D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots [J]. New Phytologist, 1992, 120(3): 371−380. DOI: 10.1111/j.1469-8137.1992.tb01077.x
|
薛延丰, 汪敬恒, 李恒. 不同氮素形态对小麦体内氮磷钾分布及群体结构和产量的影响 [J]. 西南农业学报, 2014, 27(6): 2444−2448.
|
Kronzucker H J, Glass A M, Siddiqi M Y, et al. Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential [J]. The New Phytologist, 2000, 145(3): 471−476. DOI: 10.1046/j.1469-8137.2000.00606.x
|
乔云发, 苗淑杰, 韩晓增. 氮素形态对大豆根系形态性状及释放H + 的影响 [J]. 大豆科学, 2006, 25(3): 265−269.
|
柏文恋, 张梦瑶, 任家兵, 等. 小麦/蚕豆间作作物生长曲线的模拟及种间互作分析 [J]. 应用生态学报, 2018, 29(12): 4037−4046.
|
赵乾旭, 史静, 夏运生, 等. AMF与隔根对紫色土上玉米| | 大豆种间氮竞争的影响 [J]. 中国农业科学, 2017, 50(14): 2696−2705.
|
吕越, 吴普特, 陈小莉, 等. 玉米/大豆间作系统的作物资源竞争 [J]. 应用生态学报, 2014, 25(1): 139−146.
|
覃潇敏, 潘浩男, 肖靖秀, 等. 施磷水平对玉米大豆间作系统氮素吸收与分配的影响 [J]. 植物营养与肥料学报, 2021, 27(7): 1173−1184.
|
杨文亭, 王晓维, 王建武. 豆科−禾本科间作系统中作物和土壤氮素相关研究进展 [J]. 生态学杂志, 2013, 32(9): 2480−2484.
|
Hauggaard-Nielsen H, Jensen E S. Facilitative root interactions in intercrops [J]. Plant and Soil, 2005, 274(1): 237−250.
|
Sattelmacher B, Gerendas J, Thoms K, et al. Interaction between root growth and mineral nutrition [J]. Environmental and Experimental Botany, 1993, 33(1): 63−73. DOI: 10.1016/0098-8472(93)90056-L
|
Nazeri N K, Lambers H, Tibbett M, et al. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries [J]. Plant, Cell and Environment, 2014, 37(4): 911−921.
|
Mariotte P, Meugnier C, Johnson D, et al. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species [J]. Mycorrhiza, 2013, 23(4): 267−277. DOI: 10.1007/s00572-012-0465-8
|
金海如, 张萍华, 蒋冬花. 同位素示踪研究丛枝菌根真菌吸收不同氮素并向寄主植物输运的机理 [J]. 土壤学报, 2011, 48(4): 888−892.
|
李侠, 张俊伶. 丛枝菌根真菌对氮素的吸收作用和机制 [J]. 山西大同大学学报(自然科学版), 2008, 24(6): 75−78.
|
贾琴宇, 刘灵, 黄庶识. AMF对间套作体系中植物-土壤-微生物相互作用的影响及机制 [J]. 广西科学院学报, 2020, 36(2): 193−199.
|
Smith S S E. Mycorrhizas of autotrophic higher plants [J]. Biological Reviews, 1980, 55(4): 475−510. DOI: 10.1111/j.1469-185X.1980.tb00701.x
|
Qiao X, Bei S K, Li C J, et al. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat [J]. Scientific Reports, 2015, 5: 8122. DOI: 10.1038/srep08122
|
程谊, 张金波, 蔡祖聪. 气候−土壤−作物之间氮形态契合在氮肥管理中的关键作用 [J]. 土壤学报, 2019, 56(3): 507−515.
|
徐晓鹏, 傅向东, 廖红. 植物铵态氮同化及其调控机制的研究进展 [J]. 植物学报, 2016, 51(2): 152−166. DOI: 10.11983/CBB15077
|
高文礼, 再努尔·吐尔逊, 桑钰, 等. 丛枝菌根真菌对植物氮素吸收作用的研究进展 [J]. 中国农学通报, 2021, 37(27): 53−58. DOI: 10.11924/j.issn.1000-6850.casb2020-0761
|
Tanaka Y, Yano K. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied [J]. Plant, Cell and Environment, 2005, 28(10): 1247−1254. DOI: 10.1111/j.1365-3040.2005.01360.x
|
李侠, 叶诚诚, 张俊伶, 等. 丛枝菌根真菌侵染指标与植物促生效应相关性分析 [J]. 中国农业大学学报, 2021, 26(10): 41−53.
|