Zhang Zuozhong, Gao Demin, Wang Haoyu, Niu Haifeng, Guo Zaijun. Moisture Content Prediction Model for Hourly Steps of Small Dead Combustibles on the Surface[J]. Journal of Southwest Forestry University, 2024, 44(5): 147-156. DOI: 10.11929/j.swfu.202307023
Citation: Zhang Zuozhong, Gao Demin, Wang Haoyu, Niu Haifeng, Guo Zaijun. Moisture Content Prediction Model for Hourly Steps of Small Dead Combustibles on the Surface[J]. Journal of Southwest Forestry University, 2024, 44(5): 147-156. DOI: 10.11929/j.swfu.202307023

Moisture Content Prediction Model for Hourly Steps of Small Dead Combustibles on the Surface

More Information
  • Received Date: July 09, 2023
  • Revised Date: November 27, 2023
  • Accepted Date: February 22, 2024
  • Available Online: March 06, 2024
  • Experimenting in Betula platyphylla and Larix gmelinii forests of Chongli District, Zhangjiakou City, traditional direct estimation methods and long short-term memory neural network models(LSTM) were used for single-step moisture content prediction. Combining restructured direct estimation methods, informer, and LSTM enabled predictions of moisture content sequences at different intervals. An analysis was conducted on the informer's accuracy in predicting moisture content sequences for 2 combustibles without relying on meteorological elements. Results revealed significant differences in the performance of 3 moisture content sequence prediction models for varying intervals. Direct estimation methods exhibited the highest prediction accuracy at shorter time intervals, while the informer model excelled at longer intervals, followed by the LSTM model. Utilizing the informer not only resolved high time complexity and memory consumption issues of the LSTM model but also enhanced the prediction accuracy of moisture content sequences over longer intervals. Traditional meteorological factor regressions and direct estimation methods for moisture content prediction rely on real-time values of current and historical meteorological elements. Using deep learning methods to address multi-variable and multi-step time series prediction achieved a 30-hour forecast of moisture content sequences. The B. platyphylla forest moisture content was predicted with an MAE of 0.2943, while L. gmelinii forest moisture content had an MAE of 0.1791, providing a theoretical basis for forest fire prediction.

  • [1]
    Collins L, Bradstock R A, Clarke H, et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire [J]. Environmental Research Letters, 2021, 16(4): 044029. DOI: 10.1088/1748-9326/abeb9e
    [2]
    Rakhmatulina E, Stephens S, Thompson S. Soil moisture influences on Sierra Nevada dead fuel moisture content and fire risks [J]. Forest Ecology and Management, 2021, 496: 119379. DOI: 10.1016/j.foreco.2021.119379
    [3]
    Yebra M, Chuvieco E, Riaño D. Estimation of live fuel moisture content from MODIS images for fire risk assessment [J]. Agricultural and Forest Meteorology, 2008, 148(4): 523−536. DOI: 10.1016/j.agrformet.2007.12.005
    [4]
    时珍霞. 基于3S技术的天山北坡森林地表可燃物估测模型研究[D]. 乌鲁木齐: 新疆师范大学, 2013.
    [5]
    马云辉, 马长明, 冯淑瑶, 等. 河北省蒙古栎次生林林下可燃物负荷量及其影响因素 [J]. 应用生态学报, 2023, 34(8): 2082−2090.
    [6]
    满子源. 江西南昌森林可燃物含水率动态变化及湿度码适用性研究[D]. 哈尔滨: 东北林业大学, 2020.
    [7]
    伍威, 张运林, 满子源. 湿度码预测江西典型地表细小死可燃物含水率适用性分析 [J]. 中南林业科技大学学报, 2021, 41(10): 37−44, 56.
    [8]
    张运林. 老爷岭典型林分内地表不同层可燃物含水率动态变化及湿度码预测模型适用性 [J]. 东北林业大学学报, 2021, 49(3): 67−73.
    [9]
    周勇, 张贵, 张运林, 等. 江西南昌活可燃物含水率动态变化和预测模型 [J]. 中南林业科技大学学报, 2021, 41(8): 28−35.
    [10]
    张恒, 金森, 邸雪颖. 基于FWI湿度码的塔河林业局地表凋落物含水率预测 [J]. 应用生态学报, 2014, 25(7): 2049−2055.
    [11]
    Peng B, Zhang J W, Xing J, et al. Distribution prediction of moisture content of dead fuel on the forest floor of Maoershan national forest, China using a LoRa wireless network [J]. Journal of Forestry Research, 2022, 33(3): 899−909. DOI: 10.1007/s11676-021-01379-9
    [12]
    于宏洲, 金森, 邸雪颖. 以小时为步长的大兴安岭兴安落叶松林地表可燃物含水率预测模型 [J]. 应用生态学报, 2013, 24(6): 1565−1571.
    [13]
    范佳乐, 郭妍, 于宏洲, 等. 地表细小可燃物含水率实测值与自动测量仪器值的比较和校正 [J]. 森林工程, 2023, 39(1): 129−139. DOI: 10.3969/j.issn.1006-8023.2023.01.016
    [14]
    刘祺. 帽儿山典型林分地表死可燃物含水率测预模型研究[D]. 哈尔滨: 东北林业大学, 2021.
    [15]
    周涛, 曲智林, 李传明. 落叶松林地表细小可燃物含水率主要影响因子 [J]. 东北林业大学学报, 2016, 44(3): 86−88. DOI: 10.3969/j.issn.1000-5382.2016.03.018
    [16]
    王珊, 冯仲科, 郁壮, 等. 模拟降雨下以小时为步长的崇礼区典型林分地表细小死可燃物含水率预测模型 [J]. 应用与环境生物学报, 2023, 29(4): 913−921.
    [17]
    张冉. 大兴安岭典型林分及沟塘草甸细小死可燃物含水率预测模型[D]. 哈尔滨: 东北林业大学.
    [18]
    Zhou H Y, Zhang S H, Peng J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106−11115. DOI: 10.1609/aaai.v35i12.17325
    [19]
    詹曾文. 基于稀疏自注意力机制的长时间序列电力负荷预测模型研究[D]. 南昌: 南昌大学, 2022.
    [20]
    Liu P J, Zhang H Z, Lian W, et al. Multi-level wavelet convolutional neural networks [J]. IEEE Access, 2019, 7: 74973−74985. DOI: 10.1109/ACCESS.2019.2921451
    [21]
    Zhang Y L, Sun P. Study on the diurnal dynamic changes and prediction models of the moisture contents of two litters [J]. Forests, 2020, 11(1): 95. DOI: 10.3390/f11010095
    [22]
    Fosberg M A. Drying rates of heartwood below fiber saturation [J]. Forest Science, 1970, 16(1): 57−63.
    [23]
    张运林, 向敏, 丁波. 直接估计法预测不同层凋落物含水率的适用性分析 [J]. 中南林业科技大学学报, 2022, 42(7): 9−19.
    [24]
    张运林, 田玲玲, 向敏, 等. 室内模拟空气温湿度对蒙古栎林凋落物床层平衡含水率和时滞的影响 [J]. 生态学杂志, 2022, 41(10): 2072−2080.
    [25]
    刘洪笑, 向勉, 周丙涛, 等. 基于Informer的长序列时间序列电力负荷预测 [J]. 湖北民族大学学报(自然科学版), 2021, 39(3): 326−331.
    [26]
    Anderson S A J, Anderson W R. Predicting the elevated dead fine fuel moisture content in gorse (Ulex europaeus L.) shrub fuels [J]. Canadian Journal of Forest Research, 2009, 39(12): 2355−2368. DOI: 10.1139/X09-142
    [27]
    金森, 姜文娟, 孙玉英. 用时滞和平衡含水率准确预测可燃物含水率的理论算法 [J]. 森林防火, 2000(4): 12−14.
    [28]
    Chrosciewicz Z. Prediction of forest-floor moisture content under diverse jack pine canopy conditions [J]. Canadian Journal of Forest Research, 1989, 19(11): 1483−1487. DOI: 10.1139/x89-225
    [29]
    Nieto H, Aguado I, Chuvieco E, et al. Dead fuel moisture estimation with MSG-SEVIRI data. Retrieval of meteorological data for the calculation of the equilibrium moisture content [J]. Agricultural and Forest Meteorology, 2010, 150(7/8): 861−870.

Catalog

    Article views (181) PDF downloads (30) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return