Fei T, Ye J X, Wang J W. Risk Assessment of Solenopsis invicta Invasion in Yiliang County Based on Machine Learning[J]. Journal of Southwest Forestry University, 2025, 45(2): 183–191. DOI: 10.11929/j.swfu.202402014
Citation: Fei T, Ye J X, Wang J W. Risk Assessment of Solenopsis invicta Invasion in Yiliang County Based on Machine Learning[J]. Journal of Southwest Forestry University, 2025, 45(2): 183–191. DOI: 10.11929/j.swfu.202402014

Risk Assessment of Solenopsis invicta Invasion in Yiliang County Based on Machine Learning

More Information
  • Received Date: February 18, 2024
  • Revised Date: June 07, 2024
  • Accepted Date: June 20, 2024
  • Available Online: June 21, 2024
  • Using Yiliang County of Central Yunnan, China as the study area, the invasion risk of the Solenopsis invicta was assessed based on a series of possible drivers, aiming to explore its spatial dispersal mechanisms and patterns. Firsly, various environmental variables such as meteorology, vegetation, watershed, topography and geomorphology, and anthropogenic activities were quantified and raster mapped based on field work by remote sensing inversion and geographic information system(GIS) analysis. Three maching learning of MaxEnt, random forest and Logistic prediction models were constructed, also the accuracy was assessed, and a factor analysis was conducted on driving factors, respectively, so as to visualize the risk patterns of S. invicta invasion. The results show that the AUC values of MaxEnt, random forest and Logistic models are 0.926, 0.944 and 0.950 respectively, and the AUC values of the models are greater than 0.9, which indicates that the models are reliable; factor analysis shows that the main driving factors of the model are multifaceted, and the dominant independent variables of all models are different. The driving factors of the optimal Logistic model are surface humidity, food, altitude and aspect; the invasion risk model shows strong spatial heterogeneity; the high-risk areas for S. invicta in the study area are concentrated in the surrounding water bodies, barren hills and wastelands and newly forested land, which are less likely to invade the natrual vegetation areas at high altitude; special attention should be paid to the quarantine work and preventive disinfection and sterilisation of seedlings, and to strengthening the management of forest operations to promote the improvement of forest quality and the construction of natural barriers. The study complements the invasion pattern and potential risk of S. invicta in central Yunnan, providing a scientific basis for effective prevention and control, as well as a reference meaning for the risk assessment of other invasive species.

  • [1]
    Faulkner K T, Robertson M P, Wilson J R U. Stronger regional biosecurity is essential to prevent hundreds of harmful biological invasions [J]. Global Change Biology, 2020, 26(4): 2449−2462. DOI: 10.1111/gcb.15006
    [2]
    Afriansyah A, Ardiastuti E. Implementation of the international plant protection convention (ippc) in the regulation of the agreement on the application of sanitary and phytosanitary measures (sps agreement) in the world trade organization (wto): notes to Indonesia [J]. Yustisia Jurnal Hukum, 2017, 6(1): 51−80.
    [3]
    李少华, 曲爱军, 徐德坤, 等. 忍冬害虫及其天敌群落的定量分析 [J]. 应用昆虫学报, 2022, 59(2): 435−445. DOI: 10.7679/j.issn.2095-1353.2022.047
    [4]
    李志红, 秦誉嘉. 有害生物风险分析定量评估模型及其比较 [J]. 植物保护, 2018, 44(5): 134−145.
    [5]
    马学欣, 朱玲琴, 叶碧欢, 等. 红火蚁入侵浙江的风险分析及防控对策 [J]. 浙江林业科技, 2018, 38(4): 83−88. DOI: 10.3969/j.issn.1001-3776.2018.04.014
    [6]
    夏永刚, 赵正萍, 钟武洪, 等. 湖南省美国白蛾入侵风险分析 [J]. 湖南林业科技, 2021, 48(4): 105−109, 114. DOI: 10.3969/j.issn.1003-5710.2021.04.015
    [7]
    胡树泉, 徐学荣, 周卫川, 等. 红火蚁在中国的潜在地理分布预测模型 [J]. 福建农林大学学报(自然科学版), 2008, 37(2): 205−209.
    [8]
    陈晓燕, 马平, 李永川, 等. 基于CLIMEX和ArcGIS预测红火蚁在云南的潜在适生区 [J]. 植物检疫, 2015, 29(3): 34−39.
    [9]
    宋红敏, 张清芬, 韩雪梅, 等. CLIMEX: 预测物种分布区的软件 [J]. 昆虫知识, 2004, 41(4): 379−387.
    [10]
    林晓佳, 吴蓉, 武扬, 等. 家木小蠹在中国潜在适生区的CLIMEX预测及风险分析 [J]. 西南林业大学学报, 2012, 32(6): 68−72. DOI: 10.3969/j.issn.2095-1914.2012.06.014
    [11]
    姚剑, 杜宇, 马平, 等. 基于CLIMEX和GIS的南松大小蠹在中国的适生性分析 [J]. 应用昆虫学报, 2011, 48(4): 1017−1023. DOI: 10.7679/j.issn.2095-1353.2011.169
    [12]
    Wang Z L, Xu D P, Liao W K, et al. Predicting the current and future distributions of Frankliniella occidentalis (pergande) based on the MaxEnt species distribution model [J]. Insects, 2023, 14(5): 458. DOI: 10.3390/insects14050458
    [13]
    Mas B, Riera S, Allué E. Modelling Mediterranean oak palaeolandscapes using the MaxEnt model algorithm: the case of the NE Iberia under the Middle Holocene climatic scenario [J]. Ecological Informatics, 2023, 74: 101984. DOI: 10.1016/j.ecoinf.2023.101984
    [14]
    Li S, Wang Z S, Zhu Z X, et al. Predicting the potential suitable distribution area of Emeia pseudosauteri in Zhejiang Province based on the MaxEnt model [J]. Scientific Reports, 2023, 13: 1806. DOI: 10.1038/s41598-023-29009-w
    [15]
    Vatanparast M, Puckett R T, Choi D S, et al. Comparison of gene expression in the red imported fire ant (Solenopsis invicta) under different temperature conditions [J]. Scientific Reports, 2021, 11: 16476. DOI: 10.1038/s41598-021-95779-w
    [16]
    韩群营, 朱汉桥, 徐伟. 红火蚁入侵危害特点及检疫防控对策 [J]. 湖北植保, 2021(1): 9−11. DOI: 10.3969/j.issn.1005-6114.2021.01.005
    [17]
    王磊, 陈科伟, 冯晓东, 等. 我国大陆红火蚁入侵扩张趋势长期预测 [J]. 环境昆虫学报, 2022, 44(2): 339−344. DOI: 10.3969/j.issn.1674-0858.2022.02.9
    [18]
    黄俊, 吕要斌. 重大外来有害生物红火蚁入侵杭州的风险分析及防控对策 [J]. 浙江农业学报, 2017, 29(4): 676−682. DOI: 10.3969/j.issn.1004-1524.2017.04.23
    [19]
    Allen C R, Epperson D M, Garmestani A S. Red imported fire ant impacts on wildlife: a decade of research [J]. The American Midland Naturalist, 2004, 152(1): 88−103. DOI: 10.1674/0003-0031(2004)152[0088:RIFAIO]2.0.CO;2
    [20]
    赵雪晴, 刘莹, 李向永, 等. 滇中温带地区红火蚁防治方法及效果评价 [J]. 植物检疫, 2023, 37(3): 52−57.
    [21]
    陈晓燕, 马平, 余猛, 等. 红火蚁在云南的入侵风险分析 [J]. 生物安全学报, 2014, 23(2): 81−87.
    [22]
    李洁, 刘芝芹, 杨旭, 等. 滇中高原森林生态站冬春季森林小气候特征研究 [J]. 西南林业大学学报(自然科学), 2020, 40(3): 28−36.
    [23]
    陈国平, 赵俊三, 李红波, 等. 滇中城市群2000—2009年耕地时空变化及驱动力分析 [J]. 中国水土保持, 2016(5): 48−52. DOI: 10.3969/j.issn.1000-0941.2016.05.017
    [24]
    赵伟, 李爱农, 张正健, 等. 基于Landsat8热红外遥感数据的山地地表温度地形效应研究 [J]. 遥感技术与应用, 2016, 31(1): 63−73.
    [25]
    覃志豪, Li W J, Zhang M H, 等. 单窗算法的大气参数估计方法 [J]. 国土资源遥感, 2003, 15(2): 37−43.
    [26]
    Wang F, Qin Z H, Song C Y, et al. An improved mono-window algorithm for land surface temperature retrieval from landsat 8 thermal infrared sensor data [J]. Remote Sensing, 2015, 7(4): 4268−4289. DOI: 10.3390/rs70404268
    [27]
    Ali Baig M H, Zhang L F, Shuai T, et al. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance [J]. Remote Sensing Letters, 2014, 5(5): 423−431. DOI: 10.1080/2150704X.2014.915434
    [28]
    叶江霞, 王敬文, 张明莎, 等. 基于空间矩阵模型及0~1测度的美国白蛾风险格局分析 [J]. 林业科学, 2021, 57(1): 140−152. DOI: 10.11707/j.1001-7488.20210115
    [29]
    申卫星. 泰山松材线虫病、美国白蛾风险分析评估与预警技术研究[D]. 泰安: 山东农业大学, 2012.
    [30]
    陆永跃, 曾玲, 许益镌, 等. 外来物种红火蚁入侵生物学与防控研究进展 [J]. 华南农业大学学报, 2019, 40(5): 149−160. DOI: 10.7671/j.issn.1001-411X.201905080
    [31]
    张军, 李晓东, 陈春艳, 等. 新疆地势起伏度的分析研究 [J]. 兰州大学学报(自然科学版), 2008, 44(增刊1): 10−13, 19.
    [32]
    Phillips S , Phillips S J , Anderson R , et al. A Brief Tutorial on Maxent Maximum entropy modeling of species geographic distributions Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[J]. Ecological Modelling Ecography, 2006, 190(31): 161−175.
    [33]
    涂正彬, 戴强, 张文. 最大熵理论Maxent模型在林业中的应用 [J]. 四川林勘设计, 2016(2): 10−14, 25.
    [34]
    Pearson R G, Raxworthy C J, Nakamura M, et al. ORIGINAL ARTICLE: predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar [J]. Journal of Biogeography, 2007, 34(1): 102−117. DOI: 10.1111/j.1365-2699.2006.01594.x
    [35]
    Qiao H J, Lin C T, Jiang Z G, et al. Marble Algorithm: a solution to estimating ecological niches from presence-only records [J]. Scientific Reports, 2015, 5: 14232. DOI: 10.1038/srep14232
    [36]
    莫惠栋. 重抽样技术: 自举法 [J]. 扬州大学学报(自然科学版), 2001, 4(1): 1−6.
    [37]
    Hegelich S. Decision trees and random forests: machine learning techniques to classify rare events [J]. European Policy Analysis, 2016, 2(1): 98−120. DOI: 10.18278/epa.2.1.7
    [38]
    罗礼智, 覃贵亮, 王漫波, 等. 应用硫氟磺酰胺毒饵防治红火蚁 [J]. 植物保护, 2006, 32(1): 22−27. DOI: 10.3969/j.issn.0529-1542.2006.01.005
    [39]
    谢鑫, 张贤勇, 杨霁琳. 融合信息增益与基尼指数的决策树算法 [J]. 计算机工程与应用, 2022, 58(10): 139−144. DOI: 10.3778/j.issn.1002-8331.2011-0040
    [40]
    薛大勇, 李红梅, 韩红香, 等. 红火蚁在中国的分布区预测 [J]. 昆虫知识, 2005, 42(1): 57−60.
    [41]
    周卫川. 红火蚁在中国的地理分布预测 [J]. 植物检疫, 2005, 19(3): 155−157. DOI: 10.3969/j.issn.1005-2755.2005.03.011
    [42]
    Vinson S B. Insect life: invasionof the red imported fire ant (Hymenoptera: Formicidae) [J]. American Entomologist, 1997, 43(1): 23−39. DOI: 10.1093/ae/43.1.23
    [43]
    Porter S D. Impact of temperature on colony growth and developmental rates of the ant, Solenopsis invicta [J]. Journal of Insect Physiology, 1988, 34(12): 1127−1133. DOI: 10.1016/0022-1910(88)90215-6
    [44]
    Tschinkel W. The fire ants[M]. Cambridge, MA: Harvard Univ. Press, 2006.
    [45]
    李德山, 李建光. 红火蚁生物学特性及其防治 [J]. 植物检疫, 2005, 19(2): 93−95. DOI: 10.3969/j.issn.1005-2755.2005.02.008
    [46]
    Morrill W L. Dispersal of red imported fire ants by water [J]. The Florida Entomologist, 1974, 57(1): 39. DOI: 10.2307/3493830
    [47]
    曾玲, 陆永跃, 何晓芳, 等. 入侵中国大陆的红火蚁的鉴定及发生为害调查 [J]. 昆虫知识, 2005, 42(2): 144−148, 230−231.
    [48]
    许益镌, 陆永跃, 黄俊, 等. 红火蚁自然种群耐寒性的研究 [J]. 昆虫学报, 2009, 52(9): 974−983. DOI: 10.3321/j.issn:0454-6296.2009.09.006
    [49]
    Killion M J, Grant W E. A colony-growth model for the imported fire ant: potential geographic range of an invading species [J]. Ecological Modelling, 1995, 77(1): 73−84. DOI: 10.1016/0304-3800(94)00029-H
    [50]
    黄可辉, 黄振. 红火蚁形态学、生物学与防控对策 [J]. 江西农业学报, 2011, 23(9): 83−85. DOI: 10.3969/j.issn.1001-8581.2011.09.027
    [51]
    陈芳, 管云, 崔灿, 等. 不同温度对红火蚁工蚁迁移的影响 [J]. 安徽农业科学, 2018, 46(7): 78−79, 91. DOI: 10.3969/j.issn.0517-6611.2018.07.024
    [52]
    柳晓燕, 赵彩云, 李飞飞, 等. 基于MaxEnt模型预测红火蚁在中国的适生区 [J]. 植物检疫, 2019, 33(6): 70−76.
    [53]
    尹艳琼, 李向永, 谌爱东, 等. 红火蚁入侵云南10年的发生状况与防控策略探析 [J]. 环境昆虫学报, 2022, 44(6): 1356−1364. DOI: 10.3969/j.issn.1674-0858.2022.06.3

Catalog

    Article views (100) PDF downloads (37) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return