Wang F, Zhou S M, Zhao X L. Analysis of Codon Usage Bias in the Chloroplast Genome of Tadehagi triquetrum[J]. Journal of Southwest Forestry University, 2025, 45(1): 34–43. DOI: 10.11929/j.swfu.202403030
Citation: Wang F, Zhou S M, Zhao X L. Analysis of Codon Usage Bias in the Chloroplast Genome of Tadehagi triquetrum[J]. Journal of Southwest Forestry University, 2025, 45(1): 34–43. DOI: 10.11929/j.swfu.202403030

Analysis of Codon Usage Bias in the Chloroplast Genome of Tadehagi triquetrum

More Information
  • Received Date: March 10, 2024
  • Revised Date: April 25, 2024
  • Accepted Date: July 13, 2024
  • Available Online: December 27, 2024
  • To investigate the patterns and causes of the codon usage in the chloroplast genome of Tadehagi triquetrum, the complete chloroplast genome of T. triquetrum was sequenced using the Illumina NovaSeq 6000 platform, assembled and annotated, with the analysis of codon usage of the 52 screened CDS was performed by Codon W, CUSP and OriginPro. The results showed that the average GC content of T. triquetrum chloroplast genome codons was GC1(45.64%) > GC2(38.17%) > GC3(25.56%), and the content of T3S and A3S in the synonymous codons encoding amino acids was significantly higher than that of C3S and G3S. The ENC values ranged from 38.43 to 55.04 with an average of 45.64, and the CAI values ranged from 0.1 to 0.18 with an average of 0.16, indicating that their codon bias was weak. Analysis of correlation, neutral plotting, ENC‒plot, and PR2‒plot, indicating that mutation and selection jointly affect codon usage bias in the chloroplast genome of T. triquetrum. The optimal 7 codons(CUU, AUU, AUA, GUU, GAU, UCA, GGA) were selected of T. triquetrum by RSCU and ENC values, which were biased to end in A/U.

  • [1]
    Van der Linden M G, de Farias S T. Correlation between codon usage and thermostability [J]. Extremophiles, 2006, 10(5): 479−481. DOI: 10.1007/s00792-006-0533-0
    [2]
    Bulmer M. The selection-mutation-drift theory of synonymous codon usage [J]. Genetics, 1991, 129(3): 897−907. DOI: 10.1093/genetics/129.3.897
    [3]
    Hershberg R, Petrov D A. Selection on codon bias [J]. Annual Review of Genetics, 2008, 42: 287−299. DOI: 10.1146/annurev.genet.42.110807.091442
    [4]
    Romero H, Zavala A, Musto H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces [J]. Nucleic Acids Research, 2000, 28(10): 2084−2090. DOI: 10.1093/nar/28.10.2084
    [5]
    Quax T F, Claassens N, Söll D, et al. Codon bias as a means to fine-tune gene expression [J]. Molecular Cell, 2015, 59(2): 149−161. DOI: 10.1016/j.molcel.2015.05.035
    [6]
    Kwon K C, Chan H T, León I R, et al. Codon optimization to enhance expression yields insights into chloroplast translation [J]. Plant Physiology, 2016, 172(1): 62−77. DOI: 10.1104/pp.16.00981
    [7]
    Lyu X L, Yang Q, Zhao F Z, et al. Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed [J]. Nucleic Acids Research, 2021, 49(16): 9404−9423. DOI: 10.1093/nar/gkab729
    [8]
    Zhang L, Guo Y, Luo L, et al. Analysis of nuclear gene codon bias on soybean genome and transcriptome [J]. Acta Agronomica Sinica, 2011, 37(6): 965−974.
    [9]
    Zhou J H, Ding Y Z, He Y, et al. The effect of multiple evolutionary selections on synonymous codon usage of genes in the Mycoplasma bovis genome [J]. PLoS One, 2014, 9(10): e108949. DOI: 10.1371/journal.pone.0108949
    [10]
    Franklin S, Ngo B, Efuet E, et al. Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast [J]. The Plant Journal: for Cell and Molecular Biology, 2002, 30(6): 733−744. DOI: 10.1046/j.1365-313X.2002.01319.x
    [11]
    Gisby M F, Mellors P, Madesis P, et al. A synthetic gene increases TGFβ3 accumulation by 75−fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule [J]. Plant Biotechnology Journal, 2011, 9(5): 618−628. DOI: 10.1111/j.1467-7652.2011.00619.x
    [12]
    Shaw J, Lickey E B, Beck J T, et al. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis [J]. American Journal of Botany, 2005, 92(1): 142−166. DOI: 10.3732/ajb.92.1.142
    [13]
    Daniell H, Lin C S, Yu M, et al. Chloroplast genomes: diversity, evolution, and applications in genetic engineering [J]. Genome Biology, 2016, 17(1): 134. DOI: 10.1186/s13059-016-1004-2
    [14]
    Sloan D B, Taylor D R. Testing for selection on synonymous sites in plant mitochondrial DNA: the role of codon bias and RNA editing [J]. Journal of Molecular Evolution, 2010, 70(5): 479−491. DOI: 10.1007/s00239-010-9346-y
    [15]
    Yang Z R, Huang Y Y, An W L, et al. Sequencing and structural analysis of the complete chloroplast genome of the medicinal plant Lycium chinense Mill [J]. Plants, 2019, 8(4): 87. DOI: 10.3390/plants8040087
    [16]
    王媛媛, 杨美青. 蒙古韭叶绿体基因组密码子使用偏好性分析 [J]. 分子植物育种, 2021, 19(4): 1084−1092.
    [17]
    田春育, 武自念, 李贤松, 等. 扁蓿豆叶绿体基因组密码子偏好性分析 [J]. 草地学报, 2021, 29(12): 2678−2684.
    [18]
    余潇, 赵振宁, 邓莉兰. 两型豆属叶绿体基因组特征及密码子偏好性分析 [J]. 西北农业学报, 2024, 33(3): 435−451.
    [19]
    Huang P H, Ohashi H. Tadehagi[M]//Wu Z Y, Raven P H. Flora of China: vol. 10 Beijing: Science Press & St. Louis: Missouri Botanical Garden Press, 2010: 284‒285.
    [20]
    Jabbour F, Gaudeul M, Lambourdière J, et al. Phylogeny, biogeography and character evolution in the tribe Desmodieae (Fabaceae: Papilionoideae), with special emphasis on the New Caledonian endemic Genera [J]. Molecular Phylogenetics and Evolution, 2018, 118: 108−121. DOI: 10.1016/j.ympev.2017.09.017
    [21]
    Vedpal, Jayaram U, Wadhwani A, et al. Isolation and characterization of flavonoids from the roots of medicinal plant Tadehagi triquetrum (L.) H. Ohashi [J]. Natural Product Research, 2020, 34(13): 1913−1918. DOI: 10.1080/14786419.2018.1561679
    [22]
    Tang H X, Sheng W B, Liu X Y, et al. The traditional ethnic herb Tadehagi triquetrum from China: a review of its phytochemistry and pharmacological activities [J]. Pharmaceutical Biology, 2022, 60(1): 774−784. DOI: 10.1080/13880209.2022.2052908
    [23]
    Zhang W H, Li X C, Hua Y J, et al. Antioxidant product analysis of Hulu Tea (Tadehagi triquetrum) [J]. New Journal of Chemistry, 2021, 45(43): 20257−20265. DOI: 10.1039/D1NJ02639A
    [24]
    Wright F. The 'effective number of codons' used in a gene [J]. Gene, 1990, 87(1): 23−29. DOI: 10.1016/0378-1119(90)90491-9
    [25]
    Kearse M, Moir R, Wilson A, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 2012, 28(12): 1647−1649. DOI: 10.1093/bioinformatics/bts199
    [26]
    Sharp P M, Li W H. An evolutionary perspective on synonymous codon usage in unicellular organisms [J]. Journal of Molecular Evolution, 1986, 24(1): 28−38.
    [27]
    Parvathy S T, Udayasuriyan V, Bhadana V. Codon usage bias [J]. Molecular Biology Reports, 2022, 49(1): 539−565. DOI: 10.1007/s11033-021-06749-4
    [28]
    吴宪明, 吴松锋, 任大明, 等. 密码子偏性的分析方法及相关研究进展 [J]. 遗传, 2007, 29(4): 420−426.
    [29]
    王鹏良, 吴双成, 杨利平, 等. 巨桉叶绿体基因组密码子偏好性分析 [J]. 广西植物, 2019, 39(12): 1583−1592.
    [30]
    Jiang Y, Deng F, Wang H L, et al. An extensive analysis on the global codon usage pattern of baculoviruses [J]. Archives of Virology, 2008, 153(12): 2273−2282. DOI: 10.1007/s00705-008-0260-1
    [31]
    Sueoka N. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G + C content of third codon position [J]. Gene, 1999, 238(1): 53−58. DOI: 10.1016/S0378-1119(99)00320-0
    [32]
    Tang D F, Wei F, Cai Z Q, et al. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth [J]. Development Genes and Evolution, 2021, 231(1): 1−9.
    [33]
    Jia J, Xue Q Z. Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa[J]. Genomics, Proteomics & Bioinformatics, 2009, 7(4): 175−184.
    [34]
    Wang L J, Roossinck M J. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants [J]. Plant Molecular Biology, 2006, 61(4): 699−710.
    [35]
    刘文雅, 王久利, 何彦峰. 紫丁香叶绿体基因组密码子偏好性分析[J/OL].分子植物育种(2023−09−11)[2024−01−26]. https://link.cnki.net/urlid/46.1068.S.20230908.1300.004 .
    [36]
    李亚麒, 黄家雄, 娄予强, 等. 小粒咖啡铁皮卡叶绿体基因组密码子偏好性分析 [J]. 西北林学院学报, 2023, 38(2): 92−99.
    [37]
    Gu W J, Zhou T, Ma J M, et al. Analysis of synonymous codon usage in SARS Coronavirus and other viruses in the Nidovirales [J]. Virus Research, 2004, 101(2): 155−161. DOI: 10.1016/j.virusres.2004.01.006
    [38]
    马楠, 叶奕含, 邹晨鑫, 等. 人参叶绿体全基因组特征分析及密码子偏好性分析[J/OL].分子植物育种(2022−11−30)[2024−01−16]. https://kns.cnki.net/kcms/detail/46.1068.S.20221129.1638.028.html.

Catalog

    Article views (97) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return