Sun Y Y, Xie H, Ai X M, et al. Physiological Effects of Exogenous Auxin on Regulating the Leaf Growth and Delaying Senescence of Water Lily[J]. Journal of Southwest Forestry University, 2025, 45(3): 1–9. DOI: 10.11929/j.swfu.202406062
Citation: Sun Y Y, Xie H, Ai X M, et al. Physiological Effects of Exogenous Auxin on Regulating the Leaf Growth and Delaying Senescence of Water Lily[J]. Journal of Southwest Forestry University, 2025, 45(3): 1–9. DOI: 10.11929/j.swfu.202406062

Physiological Effects of Exogenous Auxin on Regulating the Leaf Growth and Delaying Senescence of Water Lily

More Information
  • Received Date: June 28, 2024
  • Revised Date: November 02, 2024
  • Accepted Date: December 11, 2024
  • Available Online: December 22, 2024
  • To investigate the effects of different concentrations of exogenous IAA on the growth and senescence of leaves in water lily, tropical viviparous Nymphaea 'Black Beauty' and non-viviparous N. 'Colorata' were used as materials, different concentrations of IAA and an equal amount of water(CK) were evenly sprayed on the upper and lower surfaces of leaves of the same age and size, respectively. The results showed that all IAA concentrations treatment increased the leaf length and width, leaf area, and had a promoting effect on the accumulation of chlorophyll content in the viviparous water lily N. 'Black Beauty'. Among them, a better effect was 200 μmol/L IAA treatment. On the contrary, a lower IAA concentration (50 μmol/L) was more beneficial for the leaf growth and chlorophyll synthesis of non-viviparous N. 'Colorata'. With the increase in IAA concentration, the content of soluble protein, starch, and soluble sugar in both viviparous and non-viviparous leaves increased and then decreased. At the same time, the reducing sugar content continued to decline, indicating that there were significant differences between different IAA concentrations. In addition, the SOD and POD activities of two types of water lilies reached their maximum at an IAA concentration of 200 μmol/L, but the POD activity of non-viviparous N. 'Colorata' leaf treated with different IAA concentrations did not show significant differences at different stages. Combined with correlation analysis and principal component analysis, there is a highly significant positive correlation between the morphology, chlorophyll content, and soluble sugar content of viviparous leaves, reflecting the photosynthetic and osmotic regulation abilities of leaves during the growth and development of epiphyllous buds. However, there is also an important synergistic effect between different indicators of non-viviparous leaves, indicating that the leaf development of both types of water lilies was regulated by IAA, and appropriate hormone concentrations can affect leaf morphology, and physiology and delay leaf senescence.

  • [1]
    黄国振, 邓惠勤, 李祖修, 等. 睡莲[M]. 北京: 中国林业出版社, 2009.
    [2]
    Li C, Wang M L, Luo X G. Uptake of uranium from aqueous solution by Nymphaea tetragona Georgi: the effect of the accompanying heavy metals [J]. Applied Radiation and Isotopes, 2019, 150: 157−163. DOI: 10.1016/j.apradiso.2019.05.024
    [3]
    艾星梅, 赵财宝, 谢欢, 等. 一种热带睡莲叶脐胎生体的快速繁育方法: CN114431146A[P]. 2022−05−06.
    [4]
    李中海, 郭永峰, 任国栋, 等. 叶片衰老研究进展 [J]. 植物生理学报, 2023, 59(9): 1627−1656.
    [5]
    于倩倩, 孔祥培, 丁兆军. 中国科学家在生长素信号转导领域取得突破性研究进展 [J]. 植物学报, 2015, 50(5): 535−537.
    [6]
    Jaiswal S, Chawla R, Sawhney S. Correlations among attributes of senescence and antioxidative status of leaf discs during epiphyllous bud differentiation in Kalanchoe pinnata Lam. (Pers.) [J]. Zeitschrift Fur Naturforschung C, Journal of Biosciences, 2012, 67(7/8): 418−428.
    [7]
    Li H F, Liu H, Hao C Y, et al. The auxin response factor TaARF15−A1 negatively regulates senescence in common wheat (Triticum aestivum L.) [J]. Plant Physiology, 2023, 191(2): 1254−1271. DOI: 10.1093/plphys/kiac497
    [8]
    Singh A P, Savaldi-Goldstein S. Growth control: brassinosteroid activity gets context [J]. Journal of Experimental Botany, 2015, 66(4): 1123−1132. DOI: 10.1093/jxb/erv026
    [9]
    Abraham Juárez M J, Hernández Cárdenas R, Santoyo Villa J N, et al. Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana [J]. Journal of Experimental Botany, 2015, 66(13): 3893−3905. DOI: 10.1093/jxb/erv191
    [10]
    朱燕, 魏佳, 许自龙, 等. 促生长植物激素对桑树叶片衰老过程生理生化指标的影响 [J]. 浙江农业学报, 2023, 35(6): 1278−1285.
    [11]
    贾燕伟, 祁娟, 赛宁刚, 等. 外源赤霉素和吲哚乙酸对老芒麦生长、生理特性及染色体端粒的调控 [J]. 草地学报, 2023, 31(2): 456−463.
    [12]
    刘建桥. 温湿度与外源激素对半夏珠芽萌发的影响[D]. 雅安: 四川农业大学, 2020.
    [13]
    刘艺平, 黄志远, 梁露, 等. 生长素IAA对荷花花期调控的影响 [J]. 河南农业科学, 2019, 48(11): 141−145.
    [14]
    杨成龙, 方少忠, 黄永旺, 等. 外源生长素影响百合地下茎生鳞茎发生的转录组分析 [J]. 南方农业学报, 2023, 54(11): 3156−3164.
    [15]
    周驰宇, 张玉薇, 蔡年辉, 等. 外源IAA与ZT喷施对截干后云南松苗木生长的影响 [J]. 西南林业大学学报(自然科学), 2024, 44(5): 18−24.
    [16]
    谭长龙, 李思雅琦, 钱澄, 等. 多糖和激素对珠芽魔芋多叶形成的调控作用 [J]. 西北农林科技大学学报(自然科学版), 2022, 50(9): 69−79.
    [17]
    李清雪, 黎洁, 许慧娴, 等. 热带睡莲叶片胎生苗的生长机理, 热带亚热带植物学报[J/OL]. (2024−04−30)[2024−06−07]. https://link.cnki.net/urlid/44.1374.q.20240429.1843.002.
    [18]
    谢欢, 艾星梅, 李宇航, 等. 睡莲叶脐着生胎芽与叶片不同部位碳水化合物代谢的关系 [J]. 应用生态学报, 2022, 33(9): 2431−2440.
    [19]
    高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
    [20]
    刘芳芳. 外源生长素对茭白肉质茎形成、碳水化合物代谢和细胞结构的影响[D]. 合肥: 安徽农业大学, 2017.
    [21]
    Piotrowska-Niczyporuk A, Bajguz A, Kotowska U, et al. Growth, metabolite profile, oxidative status, and phytohormone levels in the green Alga Acutodesmus obliquus exposed to exogenous auxins and cytokinins [J]. Journal of Plant Growth Regulation, 2018, 37(4): 1159−1174. DOI: 10.1007/s00344-018-9816-9
    [22]
    徐江民, 蒋玲欢, 沈晨辉, 等. 多种外源激素处理对水稻叶片衰老的影响 [J]. 浙江师范大学学报(自然科学版), 2018, 41(2): 81−86.
    [23]
    郑莉, 李梅, 吴学尉, 等. 米勒魔芋休眠解除过程中激素及糖类变化 [J]. 山西农业科学, 2020, 48(3): 358−363.
    [24]
    薛光宇, 魏茂胜, 陈新艳, 等. 年龄效应对香樟古树程序性衰老的影响 [J]. 西北植物学报, 2021, 41(3): 461−472.
    [25]
    Zhang J L, Zhang L, Liang D, et al. ROS accumulation-induced tapetal PCD timing changes leads to microspore abortion in cotton CMS lines [J]. BMC Plant Biology, 2023, 23(1): 311. DOI: 10.1186/s12870-023-04317-5
    [26]
    Khandani Y, Sarikhani H, Gholami M, et al. Exogenous auxin improves the growth of grapevine (Vitis vinifera L.) under drought stress by mediating physiological, biochemical and hormonal modifications [J]. Journal of Soil Science and Plant Nutrition, 2024, 24(2): 3422−3440. DOI: 10.1007/s42729-024-01765-2
    [27]
    朱城强, 温绍福, 江润海, 等. 铅胁迫下吲哚乙酸对狗牙根铅累积及生理特性的影响 [J]. 草业学报, 2024, 33(10): 96−107.
    [28]
    郗厚叶. 外源IAA对铜胁迫下两种湿地(水生)植物抗氧化系统及铜积累的影响[D]. 青岛: 青岛大学, 2019.
    [29]
    Krieger-Liszkay A, Krupinska K, Shimakawa G. The impact of photosynthesis on initiation of leaf senescence [J]. Physiologia Plantarum, 2019, 166(1): 148−164. DOI: 10.1111/ppl.12921
    [30]
    孙媛媛, 杨添琪, 艾星梅, 等. 热带睡莲展叶前后叶片形态结构差异与叶脐胎芽发育的关系 [J]. 植物研究, 2024, 44(4): 528−539.
    [31]
    Feng X, Liu L L, Li Z G, et al. Potential interaction between autophagy and auxin during maize leaf senescence [J]. Journal of Experimental Botany, 2021, 72(10): 3554−3568. DOI: 10.1093/jxb/erab094

Catalog

    Article views (39) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return