Lu D H, Feng M C, Qiu Z P, et al. Effects of Thinning Retention Density on Litter and Soil WaterRetention Characteristics of Cunninghamia lanceolata Plantation[J]. Journal of Southwest Forestry University, 2025, 45(3): 1–9. DOI: 10.11929/j.swfu.202407021
Citation: Lu D H, Feng M C, Qiu Z P, et al. Effects of Thinning Retention Density on Litter and Soil WaterRetention Characteristics of Cunninghamia lanceolata Plantation[J]. Journal of Southwest Forestry University, 2025, 45(3): 1–9. DOI: 10.11929/j.swfu.202407021

Effects of Thinning Retention Density on Litter and Soil WaterRetention Characteristics of Cunninghamia lanceolata Plantation

More Information
  • Received Date: July 08, 2024
  • Revised Date: September 11, 2024
  • Accepted Date: October 10, 2024
  • Available Online: October 16, 2024
  • Taking Cunninghamia lanceolata plantation with 11-year thinning retention density of 1200, 1800 and 2500 trees/hm2 in northern Guangdong as the research object, the differences of litter and soil water retention characteristics of different C. lanceolata plantation after thinning for 2 years and the influencing factors were analyzed, and the water retention performance of stands with different thinning retention density was explored. The results show that higher retention density was conducive to litter accumulation, and the litter inventory and thickness of 2500 trees/hm2 C. lanceolata forest increased by 7.96%–30.87% and 4.90%–24.92% compared with the other 2 density stands. The soil maximum water holding capacity and effective storage capacity of 1800 trees/hm2 stands were the largest in different retention densities of C. lanceolata forests, and were significantly greater than 1200 trees/hm2 stands. The soil saturation water holding capacity and capillary water holding capacity of 1800 trees/hm2 stands were the largest in the 3 kinds of preserved density C. lanceolata forests, which increased by 6.5% to 24.95% compared with the other 2 kinds of preserved density stands. The soil non-capillary water capacity increased with the increase of retention density, which was 2500 trees/hm2(45.50 t/hm2) > 1800 trees/hm2(32.21 t/hm2) > 1200 trees/hm2(23.76 t/hm2). The results of correlation analysis showed that litter water capacity was significantly correlated with litter thickness and existing stock, soil pH value, organic carbon content, non-capillary porosity, and non-capillary water capacity. The soil moisture content was significantly correlated with total porosity, capillary porosity, and non-capillary porosity, soil bulk density, soil organic matter content, canopy density and leaf area index. The results of coordinate comprehensive evaluation showed that the comprehensive water holding capacity of litter and soil was 1800 trees/hm2 > 2500 trees/hm2 > 1200 trees/hm2 in the stands with different retention densities. In conclusion, 1800 trees/hm2 stands had the best litter and soil water retention capacity among the 3 different retention density stands.

  • [1]
    Edwards D P, Tobias J A, Sheil D, et al. Maintaining ecosystem function and services in logged tropical forests [J]. Trends in Ecology & Evolution, 2014, 29(9): 511−520.
    [2]
    Zong Y T, Xiao Q, Lu S G. Acidity, water retention, and mechanical physical quality of a strongly acidic Ultisol amended with biochars derived from different feedstocks [J]. Journal of Soils and Sediments, 2016, 16(1): 177−190. DOI: 10.1007/s11368-015-1187-2
    [3]
    周云, 白英辰, 姚兰, 等. 鄂西南5种典型林分枯落物与土壤的持水性能 [J]. 水土保持通报, 2023, 43(2): 77−86.
    [4]
    潘春翔, 李裕元, 彭亿, 等. 湖南乌云界自然保护区典型生态系统的土壤持水性能 [J]. 生态学报, 2012, 32(2): 538−547.
    [5]
    张益, 林毅雁, 张杰铭, 等. 北京山区典型植被枯落物和土壤层水文功能 [J]. 水土保持研究, 2023, 30(4): 160−168.
    [6]
    国家林业和草原局. 中国森林资源报告(2014−2018)[R]. 北京: 中国林业出版社, 2019.
    [7]
    刁娇娇, 肖文娅, 费菲, 等. 间伐对杉木人工林生长及生态系统碳储量的短期影响 [J]. 西南林业大学学报(自然科学), 2017, 37(3): 134−139.
    [8]
    肖文娅, 刁娇娇, 费菲, 等. 不同强度间伐对杉木人工林凋落物分解速率的影响 [J]. 生态环境学报, 2016, 25(8): 1291−1299.
    [9]
    徐雪蕾, 孙玉军, 周华, 等. 间伐强度对杉木人工林林下植被和土壤性质的影响 [J]. 林业科学, 2019, 55(3): 1−12. DOI: 10.11707/j.1001-7488.20190301
    [10]
    马履一, 李春义, 王希群, 等. 不同强度间伐对北京山区油松生长及其林下植物多样性的影响 [J]. 林业科学, 2007, 43(5): 1−9. DOI: 10.3321/j.issn:1001-7488.2007.05.001
    [11]
    Tilman D, Downing J A. Biodiversity and stability in grasslands [J]. Nature, 1994, 367: 363−365. DOI: 10.1038/367363a0
    [12]
    Harmer R, Kerr G, Stokes V, et al. The influence of thinning intensity and bramble control on ground flora development in a mixed broadleaved woodland [J]. Forestry, 2017, 90(2): 247−257.
    [13]
    Cheng C P, Wang Y D, Fu X L, et al. Thinning effect on understory community and photosynthetic characteristics in a subtropical Pinus massoniana plantation [J]. Canadian Journal of Forest Research, 2017, 47(8): 1104−1115. DOI: 10.1139/cjfr-2017-0082
    [14]
    石君杰, 陈忠震, 王广海, 等. 间伐对杨桦次生林冠层结构及林下光照的影响 [J]. 应用生态学报, 2019, 30(6): 1956−1964.
    [15]
    简永旗, 吴家森, 盛卫星, 等. 间伐和林分类型对森林凋落物储量和土壤持水性能的影响 [J]. 浙江农林大学学报, 2021, 38(2): 320−328. DOI: 10.11833/j.issn.2095-0756.20200355
    [16]
    赵洋毅, 王玉杰, 王云琦, 等. 渝北水源区水源涵养林构建模式对土壤渗透性的影响 [J]. 生态学报, 2010, 30(15): 4162−4172.
    [17]
    林立文, 邓羽松, 李佩琦, 等. 桂北地区不同密度杉木林枯落物与土壤水文效应 [J]. 水土保持学报, 2020, 34(5): 200−207,215.
    [18]
    张建利, 王加国, 李苇洁, 等. 贵州百里杜鹃自然保护区杜鹃林枯落物储量及持水功能 [J]. 水土保持学报, 2018, 32(3): 167−173.
    [19]
    何琴飞, 郑威, 彭玉华, 等. 贝江河林场杉木人工林凋落物储量及其持水特性 [J]. 西北林学院学报, 2021, 36(4): 48−54.
    [20]
    白云星, 周运超, 张薰元, 等. 马尾松针阔混交人工林凋落物和土壤水源涵养能力 [J]. 林业科学, 2021, 57(11): 24−36.
    [21]
    莫非, 赵鸿, 王建永, 等. 全球变化下植物物候研究的关键问题 [J]. 生态学报, 2011, 31(9): 2593−2601.
    [22]
    Lagomarsino A, Mazza G, Agnelli A E, et al. Litter fractions and dynamics in a degraded pine forest after thinning treatments [J]. European Journal of Forest Research, 2020, 139(2): 295−310. DOI: 10.1007/s10342-019-01245-8
    [23]
    尤海舟, 毕君, 宋熙龙, 等. 间伐抚育对小五台山华北落叶松林下枯落物持水特性的影响 [J]. 水土保持通报, 2013, 33(3): 63−67, 225.
    [24]
    赵磊, 王兵, 蔡体久, 等. 江西大岗山不同密度杉木林枯落物持水与土壤贮水能力研究 [J]. 水土保持学报, 2013, 27(1): 203−208, 246.
    [25]
    Yang K, Zhu J, Zhang W, et al. Litter decomposition and nutrient release from monospecific and mixed litters: comparisons of litter quality, fauna and decomposition site effects [J]. Journal of Ecology, 2022, 110: 1673−1686. DOI: 10.1111/1365-2745.13902
    [26]
    Bravo-Oviedo A, Ruiz-Peinado R, Onrubia R, et al. Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands [J]. Forest Ecology and Management, 2017, 391: 309−320. DOI: 10.1016/j.foreco.2017.02.032
    [27]
    涂志华, 范志平, 孙学凯, 等. 大伙房水库流域不同植被类型枯落物层和土壤层水文效应 [J]. 水土保持学报, 2019, 33(1): 127−133.
    [28]
    夏璟钰, 王雯颖, 蒋林君, 等. 不同林龄杉木人工林凋落物持水特性研究 [J]. 广西林业科学, 2019, 48(4): 449−454. DOI: 10.3969/j.issn.1006-1126.2019.04.005
    [29]
    陈家琛, 左晓东, 陈立, 等. 间伐对杉木人工林凋落物分解和养分释放速率的影响 [J]. 西北林学院学报, 2023, 38(2): 119−125. DOI: 10.3969/j.issn.1001-7461.2023.02.16
    [30]
    贺淑霞, 李叙勇, 莫菲, 等. 中国东部森林样带典型森林水源涵养功能 [J]. 生态学报, 2011, 31(12): 3285−3295.
    [31]
    侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区3种林地枯落物和土壤水源涵养功能 [J]. 水土保持学报, 2018, 32(2): 357−363, 371.
    [32]
    何俊, 谢腾蛟, 杨旅涵, 等. 模拟酸雨对土壤修复中重金属淋溶特征及土壤持水能力的影响 [J]. 化工环保, 2020, 40(4): 388−395.

Catalog

    Article views (34) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return