Li F Z, Li X Y, Bian L M, et al. Analysis of Stand Age Trend of Genetic Parameters for Growth Traits and Selection of Chinese Fir[J]. Journal of Southwest Forestry University, 2025, 45(4): 1–7. DOI: 10.11929/j.swfu.202408029
Citation: Li F Z, Li X Y, Bian L M, et al. Analysis of Stand Age Trend of Genetic Parameters for Growth Traits and Selection of Chinese Fir[J]. Journal of Southwest Forestry University, 2025, 45(4): 1–7. DOI: 10.11929/j.swfu.202408029

Analysis of Stand Age Trend of Genetic Parameters for Growth Traits and Selection of Chinese Fir

More Information
  • Received Date: August 12, 2024
  • Revised Date: September 17, 2024
  • Accepted Date: October 11, 2024
  • Available Online: October 16, 2024
  • Two treatments of no selective thinning(CK) and selective thinning(T) were set up for 107 half-sib families of the second cycle of Chinese fir breeding population., selective thinning was carried out at the age of 31 a, the DBH of the stand age of 4~8,13,16,23,31~33 a was taken as the target trait, the mixed linear model method based on the best linear unbiased prediction was used to analyze the age trend of genetic parameters of DBH traits and the selection of excellent families. The results showed that during the age of 4~31 a, the phenotypic variation coefficient, additive genetic variation coefficient and individual narrow-sense heritability of DBH traits were 15.43 % ~22.02 %, 8.05 % ~14.03 %, and 0.201~0.549, respectively; the trend of variation coefficient of stand age decreased first and then increased, while the heritability continued to increase with stand age. The individual narrow-sense heritability of stand age 33 a and 32 a was 1.28 % and 9.47 % lower than that of 31 a, respectively. The genetic correlation between 4~16 a and 23 a was above 0.4, the genetic correlation among 31,32 and 33 years old was close to 1, the genetic correlation between 7 a and previous stand age and 31, 32, 33 a was below 0.4 and the genetic correlation was not significant. According to the selection rate of 10 %, compared with the excellent families selected in the rotation period of 23 a, the missing rate of selection in the primary stand age of 5~6 a, the selected stand age of 7~8 a, and the final stand age of 16 a was 63.6 %, 36.4 %, and 18.2 %, and the genetic gains were 3.53 %, 4.15 % and 6.23 %, respectively. The genetic variation and heritability of DBH traits of Chinese fir increased with stand age, and the genetic correlation between stand ages decreased with the increase of stand age interval. There was a significant genetic correlation between at young forest stage and rotation stage. Selective thinning increased the phenotypic variation, decreased the additive variation and decreased the heritability to some extent, the heritability decreased slightly, and the genetic control decreased slightly after selective thinning. Early selection can be carried out at stand age of 7~8 a, and final selection can be carried out at stand age of 16 a to ensure the accuracy of excellent family selection.

  • [1]
    Gwaze D P, Melick R, Studyvin C, et al. Genetic control of growth traits in shortleaf pine in Missouri [J]. Southern Journal of Applied Forestry, 2005, 29(4): 200−204. DOI: 10.1093/sjaf/29.4.200
    [2]
    Gapare W J, Gwaze D P, Musokonyi C. Genetic parameter estimates for growth traits and stem straightness in a breeding seedling orchard of Eucalyptus grandis [J]. Journal of Tropical Forest Science, 2003, 15(4): 613−625.
    [3]
    Moraes M L T, Missio R F, Silva A M, et al. Effect of selective thinning on the genetic parameters estimates in Pinus caribaea Morelet var. hondurensis progenies [J]. Scientia Forestalis, 2007(74): 55−65.
    [4]
    林芳馨, 胥清利, 曲晓宇, 等. 光环境差异对杉木幼林林下植被多样性及根系种间竞争的影响 [J]. 西南林业大学学报(自然科学), 2024, 44(5): 35−43.
    [5]
    周柏屹, 孙麟均, 吴鹏飞, 等. 杉木大径材培育研究进展 [J]. 世界林业研究, 2024, 37(1): 54−58.
    [6]
    陈兴彬, 肖复明, 余林, 等. 基于混合线性模型估算杉木生长性状遗传参数 [J]. 森林与环境学报, 2018, 38(4): 419−424.
    [7]
    伍汉斌, 段爱国, 张建国. 杉木地理种源不同林龄生长变异及选择 [J]. 林业科学, 2019, 55(10): 181−192.
    [8]
    邓厚银, 胡德活, 林军, 等. 杉木半同胞子代胸径变异和大径材家系选择 [J]. 热带亚热带植物学报, 2020, 28(5): 513−519. DOI: 10.11926/jtsb.4205
    [9]
    周成军, 巫志龙, 周新年, 等. 择伐强度对杉阔混交人工林生长及林下植被物种多样性的影响 [J]. 森林工程, 2023, 39(1): 46−53,62. DOI: 10.3969/j.issn.1006-8023.2023.01.006
    [10]
    巫志龙, 周成军, 周新年, 等. 杉木人工林择伐5年后生态效果综合分析 [J]. 林业资源管理, 2014(6): 128−134.
    [11]
    田地, 陈义堂, 史月冬, 等. 间伐和施肥对杉木近熟林土壤微生物特征的影响 [J]. 森林与环境学报, 2023, 43(6): 569−578.
    [12]
    杨湉, 吴裕, 赵祺, 等. 6个橡胶树优树无性系阶段性综合评价 [J]. 西部林业科学, 2024, 53(4): 65−71.
    [13]
    王翰琛, 张雄清, 张建国, 等. 杉木人工林不同密度间伐林分生长优势的变化规律分析 [J]. 林业科学研究, 2021, 34(5): 32−38.
    [14]
    赵承开. 杉木优良无性系早期选择年龄和增益 [J]. 林业科学, 2002, 38(4): 53−60. DOI: 10.3321/j.issn:1001-7488.2002.04.009
    [15]
    郑仁华. 杉木种子园自由授粉子代遗传变异及优良遗传型选择 [J]. 南京林业大学学报(自然科学版), 2006, 30(1): 8−12.
    [16]
    叶代全. 杉木第4代育种候选群体的12年生全同胞子代测定表现与选择 [J]. 南京林业大学学报(自然科学版), 2022, 46(6): 240−250.
    [17]
    明燕, 何荣健, 姚莉梅, 等. 梵净山不同针叶林土壤丛枝菌根真菌多样性研究 [J]. 云南农业大学学报(自然科学), 2023, 38(1): 149−157.
    [18]
    张辉, 蔡一冰, 胡亚楠, 等. 目标树经营模式对杉木人工林生长及土壤肥力的短期影响 [J]. 西北林学院学报, 2022, 37(1): 191−197. DOI: 10.3969/j.issn.1001-7461.2022.01.28
    [19]
    卢德浩, 冯铭淳, 黄焕强, 等. 间伐保留密度对杉木人工林生长的影响 [J]. 东北林业大学学报, 2024, 52(4): 9−16. DOI: 10.3969/j.issn.1000-5382.2024.04.002
    [20]
    赵铭臻, 王利艳, 刘静, 等. 间伐和施肥对杉木成熟林生长和材种结构的影响 [J]. 浙江农林大学学报, 2022, 39(2): 338−346. DOI: 10.11833/j.issn.2095-0756.20210226
    [21]
    赵林峰, 高建亮. 杉木无性系不同林龄生长变异与选择效应 [J]. 西北农林科技大学学报(自然科学版), 2022, 50(1): 43−51.
    [22]
    赵林峰, 邱向英. 不同林龄杉木实生林物理力学性质变异研究 [J]. 安徽农业大学学报, 2021, 48(5): 726−732.
    [23]
    Gapare W J, Musokonyi C. Provenance performance and genetic parameter estimates for Pinus caribaea var. hondurensis planted at three sites in Zimbabwe [J]. Forest Genetics, 2002, 9(3): 183−190.

Catalog

    Article views (75) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return