刁娇娇, 肖文娅, 费菲, 关庆伟, 陈斌. 间伐对杉木人工林生长及生态系统碳储量的短期影响[J]. 西南林业大学学报, 2017, 37(3): 134-139. DOI: 10.11929/j.issn.2095-1914.2017.03.021
引用本文: 刁娇娇, 肖文娅, 费菲, 关庆伟, 陈斌. 间伐对杉木人工林生长及生态系统碳储量的短期影响[J]. 西南林业大学学报, 2017, 37(3): 134-139. DOI: 10.11929/j.issn.2095-1914.2017.03.021
Jiaojiao Diao, Wenya Xiao, Fei Fei, Qingwei Guan, Bin Chen. Short Effect of Thinning on the Growth and Carbon Storage of Cunninghamia lanceolata Plantation[J]. Journal of Southwest Forestry University, 2017, 37(3): 134-139. DOI: 10.11929/j.issn.2095-1914.2017.03.021
Citation: Jiaojiao Diao, Wenya Xiao, Fei Fei, Qingwei Guan, Bin Chen. Short Effect of Thinning on the Growth and Carbon Storage of Cunninghamia lanceolata Plantation[J]. Journal of Southwest Forestry University, 2017, 37(3): 134-139. DOI: 10.11929/j.issn.2095-1914.2017.03.021

间伐对杉木人工林生长及生态系统碳储量的短期影响

Short Effect of Thinning on the Growth and Carbon Storage of Cunninghamia lanceolata Plantation

  • 摘要: 为了明晰间伐对杉木人工林生态系统碳储量的短期影响, 以南京市溧水区林场19年生的杉木为研究对象, 研究了强度间伐、中度间伐、弱度间伐、未间伐(对照)7 a后杉木人工林的生长及生态系统碳储量的变化。结果表明:间伐后, 保留木的平均胸径、树高和单株生物量均随着间伐强度的加强而增大, 胸径年生长速率为:强度间伐((0.51 ± 0.03) cm/a)>中度间伐((0.41 ± 0.04) cm/a)>弱度间伐((0.34 ± 0.05) cm/a)>未间伐((0.31 ± 0.02) cm/a); 树高年生长速率为:强度间伐((0.46 ± 0.02) m/a)>中度间伐((0.45 ± 0.03) m/a)>弱度间伐((0.31 ± 0.05) m/a)>未间伐((0.29 ± 0.05) m/a); 单株生物量年生长速率为:强度间伐((5.07 ± 0.24) kg/a)>中度间伐((3.95 ± 0.77) kg/a)>弱度间伐((2.80 ± 0.18) kg/a)>未间伐((2.29 ± 0.59) kg/a。不同间伐强度下林分总碳储量为:弱度间伐((174.94 ± 35.01) t/hm2)>未间伐((154.47 ± 24.88) t/hm2)>中度间伐((153.74 ± 15.26) t/hm2)>强度间伐((133.93 ± 24.73) t/hm2)。其中弱度间伐后, 林分的灌木层、草本层和凋落物层以及土壤层的碳储量均增加, 使得林分总碳储量显著增加了13.25%, 中度间伐和强度间伐对林分总碳储量的影响并不明显。

     

    Abstract: To accurately clarify the impact of short-term thinning on ecosystem carbon storage in 19-year-old Cunninghamia lanceolata plantation, the growth and ecosystem C storage of C.lanceolata plantation under high intensity thinning, moderate intensity thinning, light intensity thinning and non-thinning (CK.) were studied in the next 7 years.The findings indicated that the diameter at breast height (DBH), height and biomass of remaining C.lanceolata plantation were all increased with the increasing of thinning intensity.The annual growth rate of DBH was high intensity thinning ((0.51 ± 0.03) cm/a)> moderate intensity thinning ((0.41 ± 0.04) cm/a)> light intensity thinning ((0.34 ± 0.05) cm/a)> non-thinning ((0.31 ± 0.02) cm/a); The annual growth rate of height was high intensity thinning ((0.46 ± 0.02) m/a)> moderate intensity thinning ((0.45 ± 0.03) m/a)> light intensity thinning ((0.31 ± 0.05) m/a)> non-thinning ((0.29 ± 0.05) m/a); The annual growth rate of individual biomass was high intensity thinning ((5.07 ± 0.24) kg/a)> moderate intensity thinning ((3.95 ± 0.77) kg/a)> light intensity thinning ((2.80 ± 0.18) kg/a)> non-thinning ((2.29 ± 0.59) kg/a.The total C storage of stands under different thinning intensity was light intensity thinning ((174.94 ± 35.01) t/hm2)> non-thinning ((154.47 ± 24.88) t/hm2)> moderate intensity thinning ((153.74 ± 15.26) t/hm2)> high intensity thinning ((133.93 ± 24.73) t/hm2).LIT significantly increased ecosystem C storage significantly by 13.25% due to the increased C pools in shrub, herb, litter and soil, whereas MIT and HIT had no significant effects on ecosystem C storage.

     

/

返回文章
返回