基于I-FCN模型的城市高分辨率遥感影像植被信息提取

Extracting Urban Vegetation from High-resolution Remote Sensing Image Based on I-FCN Model

  • 摘要: 为了提高城市高分辨率遥感影像中植被信息的提取精度,提出一种改进的全卷积神经网络模型,通过大量的训练数据获得最佳模型参数,进行植被信息的提取,并与支持向量机、面向对象法、经典的FCN模型方法提取的植被信息进行对比分析。结果表明:提出的网络模型不但能够有效缓解“椒盐现象”,还能保证小面积的植被提取与植被区域边界的准确性。该方法可自动综合多种特征,所以可有效减少植被像元的误分与漏分现象,提高植被提取精度。

     

    Abstract: In order to improve the extraction of urban vegetation from high-resolution remote sensing image, an novel full convolutional neural network model was proposed. The best model parameters were obtained through a large amount of training data, and the vegetation information was extracted. The vegetation information extracted by support vector machine, object-oriented method and classical FCN model method was compared and analyzed. The results show that the proposed network model can not only effectively alleviate the "salt and pepper phenomenon", but also ensure the accuracy of small-area vegetation extraction and vegetation area boundaries. The method can automatically integrate multiple features, so it can effectively reduce the misclassification and leakage of vegetation pixels and improve the accuracy of vegetation extraction.

     

/

返回文章
返回