多时相Landsat遥感影像相对辐射归一化方法的性能比较

Performance Comparison of Multi-temporal Landsat Remote Sensing Image Relative Radiation Normalization Method

  • 摘要: 多时相遥感影像的辐射归一化操作是进行土地覆盖变化检测和图像拼接之前不可缺少的步骤,本研究基于2013年7月10日和2016年3月28日覆盖南京的Landsat 8 OLI数据,以2016年影像作为参考影像,采用基于分布的直方图匹配法和顺序转换法,与基于像元的多元变化检测法和随机森林法对影像实施相对辐射归一化操作。采用信息熵、边缘强度、空间频率、峰值信噪比、交互信息量5个客观评价指标对不同相对辐射归一化方法的性能进行了评价。结果表明:4种归一化方法处理后通过目视能看出影像空间信息保留很完整,没有破坏地物的光谱特征,再结合5个评价分析比较得出顺序转化法的归一化效果最优。研究结论可为多时相遥感影像的协同利用提供参考。

     

    Abstract: The radiation normalization operation of multi-temporal remote sensing images is an indispensable step before land cover change detection and image stitching. This study was based on the Landsat 8 OLI data covering Nanjing on July 10, 2013 and March 28, 2016, with 2016 images as reference images. The distribution-based histogram matching method and sequential conversion method were used to perform relative radiation normalization operation on images based on pixel-based multivariate change detection method and random forest method. The performance of different relative radiation normalization methods was evaluated by using 5 objective evaluation indexes: information entropy, edge intensity, spatial frequency, peak signal-to-noise ratio and interactive information. The results show that after 4 kinds of normalization methods, it can be seen through visual observation that the image spatial information remains intact and there is no spectral feature of the damaged features. Combined with 5 evaluations and comparisons, it is concluded that the normalization effect of the sequential transformation method is optimal. The research conclusions can provide reference for the collaborative use of multi-temporal remote sensing images.

     

/

返回文章
返回