基于Landsat 8 OLI的云南元江流域森林生物量光学遥感估测及其饱和点分析

Optical Remote Sensing Estimation and Saturation Point Analysis of Forest Biomass in Yuanjiang Basin, Yunnan Province Based on Landsat 8 OLI

  • 摘要: 以云南省元江流域11种优势树种作为研究对象,基于森林资源二类调查数据和同期Landsat 8 OLI 遥感影像,采用多元线性逐步回归和支持向量机回归的方法分别建立遥感生物量估测模型,进而反演流域森林生物量,同时确定光学遥感生物量饱和点阈值。结果表明:11种优势树种地上生物量遥感估测的光饱和值分别为云南松83 t/hm2、思茅松79 t/hm2、华山松125 t/hm2、杉木68 t/hm2、其他针叶树89 t/hm2、桉树74 t/hm2、橡胶66 t/hm2、常绿阔叶117 t/hm2、落叶阔叶56 t/hm2、其他阔叶85 t/hm2、其他乔木经济树55 t/hm2;支持向量机模型的平均相对误差绝对值和决定系数R²均优于多元线性回归模型,支持向量机模型中11种优势树种平均残差均小于多元线性回归模型。研究结果可为提高元江流域森林生物量的估测精度提供参考。

     

    Abstract: Based on the second-class survey data of forest resources and Landsat 8 OLI remote sensing images in the same period, taking 11 dominant tree species in Yuanjiang basin of Yunnan Province as the research object, the remote sensing biomass estimation models are established by using the methods of multiple linear stepwise regression and support vector machine regression, and then the forest biomass in the basin is retrieved, and the threshold of optical remote sensing biomass saturation point is determined at the same time. The results showed that the light saturation values estimated by remote sensing of aboveground biomass of 11 dominant tree species were 83 t/hm2 of Yunnan pine, 79 t/hm2 of Simao Pine, 125 t/hm2 of Huashan pine, 68 t/hm2 of Cunninghamia lanceolata, 89 t/hm2 of other conifers, 74 t/hm2 of Eucalyptus, 66 t/hm2 of rubber, 117 t/hm2 of evergreen broad-leaved leaves, 56 t/hm2 of deciduous broad-leaved leaves, 85 t/hm2 of other broad-leaved trees and 55 t/hm2 of other economic trees; Absolute value of average relative error and determination coefficient R² of support vector machine model. The average residuals of 11 dominant tree species in support vector machine model are less than those in multiple linear regression model. This study can provide a reference for improving the estimation accuracy of forest biomass in Yuanjiang River Basin.

     

/

返回文章
返回