本文排版定稿已在中国知网网络首发,如需阅读全文请打开知网首页,并搜索该论文题目即可查看。

云南省针叶林地上生物量时空分布及动态分析研究

Spatiotemporal Dynamics and Distribution of Aboveground Biomass in Coniferous Forests of Yunnan Province

  • 摘要: 基于云南省2002年、2007年、2012年、2017年森林资源连续清查4期数据及同期Landsat影像,结合气候和地形数据,利用随机森林分类器(RFC)获取4期云南省针叶林面状数据,并对比了2类Bagging和Boosting技术共5种模型的拟合效果,确定了随机森林回归(RFR)为最优模型,用于4期全省针叶林地上生物量(AGB)反演,进而探讨云南省针叶林AGB的时间动态变化及空间分布。结果表明:利用RFC模型对2002—2017年土地利用进行分类,分类结果OA均在0.76~0.78,Kappa系数在0.65~0.69,具有较高的准确性。在对针叶林AGB进行遥感建模估测时,基于Bagging的决策树模型在拟合稳定性和效果上优于基于Boosting的决策树模型。云南省针叶林2002年、2007年、2012年、2017年的总AGB分别是1.49、1.33、1.35、1.58 Gt,呈先减少后增加趋势,2017年总AGB较2002年增长6%。2002—2017年除部分州市外,整体AGB呈增长趋势。

     

    Abstract: Based on the four-phase (2002, 2007, 2012, and 2017) continuous forest inventory (CFI) data of Yunnan Province and contemporaneous Landsat imagery, in conjunction with climate and topographic data, this study employed the Random Forest Classifier (RFC) to derive coniferous forest spatial distribution data for the four time periods. The fitting performance of five models representing two categories of ensemble learning techniques—Bagging and Boosting—was compared. Random Forest Regression (RFR) was identified as the optimal model and subsequently utilized for the inversion of aboveground biomass (AGB) of coniferous forests across the four periods at the provincial scale. The temporal dynamics and spatial distribution of coniferous forest AGB in Yunnan Province were further analyzed.The results indicate that land use classification using the RFC model for the period 2002–2017 achieved an overall accuracy (OA) ranging from 0.76 to 0.78, with Kappa coefficients between 0.65 and 0.69, demonstrating high classification accuracy. In the remote sensing-based modeling and estimation of coniferous forest AGB, decision tree models based on the Bagging technique exhibited superior fitting stability and performance compared to those based on Boosting. The total AGB of coniferous forests in Yunnan Province was 1.49 Gt, 1.33 Gt, 1.35 Gt, and 1.58 Gt in 2002, 2007, 2012, and 2017, respectively, showing an initial decline followed by an increase. The total AGB in 2017 increased by 6% compared to 2002. From 2002 to 2017, despite declines in certain prefectures, the overall trend of AGB exhibited an increase.

     

/

返回文章
返回