本文排版定稿已在中国知网网络首发,如需阅读全文请打开知网首页,并搜索该论文题目即可查看。
基于PSO–SVR模型和分级变量选择的思茅松地上生物量估测研究
Study on Aboveground Biomass Estimation of Pinus kesiya var. langbianensis Based on PSO–SVR Model
-
摘要: 基于哨兵2(Sentinel–2A)遥感数据,利用粒子群优化算法(PSO)优化支持向量回归(SVR)模型的惩罚参数(C)和核函数参数(γ),提高AGB反演精度。在变量选择过程中,采用分级变量选择方法,按照皮尔逊相关系数的绝对值排序,并构建不同变量组合的SVR和PSO–SVR模型,探讨特征选择对模型性能的影响。结果表明:通过5折交叉验证评估模型的泛化能力后,选择前10%分级变量的PSO–SVR模型表现最佳,其R2为0.989,RMSE为4.623 t/hm2,显著优于传统SVR模型(R2=0.813,RMSE=18.697 t/hm2)。随着变量数量增加,模型精度下降,所有变量参与建模时,PSO–SVR的R2降至0.311,RMSE增至35.831 t/hm2,表明冗余变量的引入会削弱模型的预测能力。综上所述,PSO优化SVR参数的有效性得到了验证,合理的变量筛选与优化算法结合可显著提高AGB估测精度。Abstract: This study utilizes Sentinel–2A remote sensing data to optimize the penalty parameter(C) and the kernel function parameter(γ) of the Support Vector Regression(SVR) model using the Particle Swarm Optimization(PSO) algorithm, aiming to enhance the accuracy of Aboveground Biomass(AGB) inversion. During the variable selection process, a hierarchical variable selection method is employed, where variables are ranked by the absolute value of Pearson's correlation coefficient. Different variable combinations are used to construct both SVR and PSO–SVR models to investigate the impact of feature selection on model performance. The results show that, after evaluating the model's generalization ability using 5-fold cross-validation, the PSO–SVR model with the top 10% of selected hierarchical variables performs the best, achieving an R2 of 0.989 and RMSE of 4.623 t/hm2, significantly outperforming the traditional SVR model(R2 = 0.813, RMSE = 18.697 t/hm2). As the number of variables increases, the model's accuracy decreases. When all variables are included in the modeling process, the R2 of PSO–SVR drops to 0.311, and the RMSE increases to 35.831 t/hm2, indicating that the introduction of redundant variables weakens the model’s predictive ability. In summary, the effectiveness of PSO optimization for SVR parameters is validated, and the combination of reasonable variable selection with optimization algorithms significantly improves AGB estimation accuracy.