本文排版定稿已在中国知网网络首发,如需阅读全文请打开知网首页,并搜索该论文题目即可查看。
基于面向对象结合泰森多边形的杉木人工林冠幅提取研究
Crown Width Extraction in Chinese Fir Plantations Using an Object-Oriented Approach Combined with Voronoi Diagrams
-
摘要: 以福建省顺昌县国有林场的杉木人工林为研究对象,基于大疆M300 RTK无人机搭载LiDAR和多光谱传感器所获取的林分多光谱与点云数据与地面调查数据,提取了人工林的CHM、树顶位置,并利用面向对象结合泰森多边形分割方法,实现了高郁闭度林分中的单木冠幅分割,探讨一种高效的高郁闭度杉木人工林的冠幅提取方法。结果表明:使用局部最大值法对杉木人工林树顶识别精度达95.6%,使用面向对象的泰森多边形分割方法对杉木人工林树冠分割精度达到86%。融合LiDAR垂直结构信息与多光谱纹理特征,结合泰森多边形分割,显著提升高郁闭度林分冠幅分割精度,为杉木人工林生物量动态监测与碳汇计量提供了可靠的技术路径。Abstract: This study focused on a Cunninghamia lanceolata (Chinese Fir) plantation within a state-owned forest farm in Shunchang County, Fujian Province. Utilizing multispectral and point cloud data acquired by a DJI Matrice 300 RTK UAV equipped with LiDAR and multispectral sensors, alongside ground-truth survey data, we extracted the Canopy Height Model (CHM) and treetop positions. An object-based approach integrating the Thiessen polygon method was employed to achieve individual tree crown delineation in stands with high canopy closure. The results indicated that by constructing the CHM from LiDAR point cloud data and applying a Local Maximum algorithm to the combined datasets, a treetop detection accuracy of 95.6% was achieved. The object-based Thiessen polygon segmentation method effectively delineated the crowns of Chinese Fir with an accuracy of 86%. The fusion of LiDAR-derived vertical structure information and multispectral texture features, coupled with Thiessen polygon segmentation, significantly enhanced the accuracy of crown delineation in high-density stands. This methodology provides a reliable technical pathway for dynamic biomass monitoring and carbon sink quantification in Chinese Fir plantations.
下载: