本文排版定稿已在中国知网网络首发,如需阅读全文请打开知网首页,并搜索该论文题目即可查看。

基于LandTrendr算法的森林干扰监测与地形调控效应分析

Forest Disturbance Monitoring and Terrain Control Effects Based on LandTrendr Algorithm

  • 摘要: 基于Google Earth Engine平台和LandTrendr时序分割算法,提出多维中位合成法提升时序连续性,构建了基于干扰持续期–恢复速率–轨迹形态的三级干扰类型判别体系,定量解析了地形因子的驱动机制。结果表明:1993—2024年滇东喀斯特山地森林干扰斑块空间范围提取的平均一致性达85.7%,干扰年份的提取精度高(R2=0.95,MAE=1.15 a)。滇东喀斯特山地的累计干扰面积为(872.7 ± 15.2) km2,2023年达历史峰值(228.7 km2),演化呈现波动下降(1993—2010年)、震荡上升(2011—2020年)和极端干扰(2021—2024年)3个阶段的特征。空间分布显著集聚于16001800 m中海拔带(58.6%)和坡度≤10°的区域(69.2%)。干扰类型以短期高强度人为干扰为主导(63.1%),其次为以人为火源为主的火灾干扰(27.0%)和干旱胁迫干扰(9.9%),地形可达性是关键调控因子。研究构建了适用于喀斯特复杂地形的森林干扰监测技术框架,揭示了滇东喀斯特山地森林干扰过程在时间动态、空间分布、类型构成及地形调控机制上的四维格局特征,为区域森林干扰风险精准识别、动态监测与适应性管理提供了技术支撑。

     

    Abstract: The forest disturbance process in the karst mountains of eastern Yunnan is unique and complex, necessitating precise monitoring for assessing regional ecosystem services and carbon sequestration potential. By integrating the Google Earth Engine (GEE) platform with the LandTrendr time-series segmentation algorithm, this study developed a multi-dimensional median synthesis method to enhance time-series continuity. A three-tiered disturbance type classification system based on disturbance duration, recovery rate, and trajectory morphology was constructed, and the driving mechanisms of terrain factors were quantitatively analyzed. Key results were: (1) High temporal accuracy of disturbance year detection (R2 = 0.95, MAE = 1.15 years) and satisfactory spatial consistency of extracted disturbance patches (Mean Spatial Consistency, MSC = 85.7%). (2) Cumulative disturbance area from 1993 to 2024 reached 872.7 ± 15.2 km2, peaking historically at 228.7 km2 in 2023. The evolution exhibited three distinct phases: fluctuating decline (1993–2010), oscillating rise (2011–2020), and extreme disturbance (2021–2024). (3) Spatially, disturbances were significantly concentrated in the mid-altitude zone (16001800 m; 58.6%) and gentle slopes (≤10°; 69.2%). (4) Anthropogenic disturbance dominated (63.1%), followed by fire disturbance (27.0%, primarily human-ignited) and drought stress disturbance (9.9%), with terrain accessibility identified as the key regulatory factor. This study establishes a forest disturbance monitoring framework suitable for complex karst terrain, revealing a four-dimensional pattern encompassing temporal dynamics, spatial distribution, type composition, and terrain regulation mechanisms. It provides a technical foundation for precise identification of regional forest disturbance risks, dynamic monitoring, and adaptive management.

     

/

返回文章
返回